TensorRT-LLMs/cpp/tensorrt_llm/kernels/selectiveScan/selectiveScan.cu
Kaiyu Xie 2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00

632 lines
24 KiB
Plaintext

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda_runtime_api.h>
#include <cooperative_groups/memcpy_async.h>
#include <cuda/pipeline>
#include <cuda.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#ifdef ENABLE_FP8
#include <cuda_fp8.h>
#endif
#include "selectiveScan.h"
#include "CudaType.h"
#include "bmmchunk.h"
#include "chunkcumsum.h"
#include "chunkscan.h"
#include "chunkstate.h"
#include "statepassing.h"
namespace tensorrt_llm
{
namespace kernels
{
__device__ float toFloat(float f)
{
return f;
}
__device__ float toFloat(__half h)
{
return __half2float(h);
}
#ifdef ENABLE_BF16
__device__ float toFloat(__nv_bfloat16 val)
{
return __bfloat162float(val);
}
#endif
__device__ void convertAndStore(float* output, float input)
{
*output = input;
}
__device__ void convertAndStore(__half* output, float input)
{
*output = __float2half(input);
}
#ifdef ENABLE_BF16
__device__ void convertAndStore(__nv_bfloat16* output, float input)
{
*output = __float2bfloat16(input);
}
#endif
#pragma nv_diag_suppress static_var_with_dynamic_init
template <typename input_t, typename weight_t, int DSTATE = 16, int CHANNELS_PER_BLOCK = 128, int STAGES = 12,
int SEQ_UNROLL = 6>
__launch_bounds__(256, 1) __global__ void selective_scan_loop_kernel(SSMParamsBase params)
{
input_t* output = reinterpret_cast<input_t*>(params.out_ptr);
input_t* state = reinterpret_cast<input_t*>(params.x_ptr);
input_t* x = reinterpret_cast<input_t*>(params.u_ptr);
input_t* dt = reinterpret_cast<input_t*>(params.delta_ptr);
weight_t* A = reinterpret_cast<weight_t*>(params.A_ptr);
input_t* B = reinterpret_cast<input_t*>(params.BC_ptr);
input_t* C = reinterpret_cast<input_t*>(params.BC_ptr);
weight_t* D = reinterpret_cast<weight_t*>(params.D_ptr);
input_t* z = reinterpret_cast<input_t*>(params.z_ptr);
weight_t* dt_bias = reinterpret_cast<weight_t*>(params.delta_bias_ptr);
bool dt_softplus = params.delta_softplus;
int num_channels = params.dim;
__shared__ cuda::pipeline_shared_state<cuda::thread_scope::thread_scope_block, STAGES / SEQ_UNROLL> pipeline_state;
auto block = cooperative_groups::this_thread_block();
__shared__ __align__(16) input_t sh_B[STAGES][DSTATE];
__shared__ __align__(16) input_t sh_C[STAGES][DSTATE];
__shared__ __align__(128) input_t sh_dt[STAGES][CHANNELS_PER_BLOCK];
__shared__ input_t sh_x[STAGES][CHANNELS_PER_BLOCK];
__shared__ input_t sh_z[STAGES][CHANNELS_PER_BLOCK];
int const channel = blockIdx.x * blockDim.x + threadIdx.x;
int const sample = blockIdx.y; // batch id
int const slot_idx = params.slot_mapping_ptr == nullptr ? sample : params.slot_mapping_ptr[sample];
int const bc_cols = DSTATE * 2 + params.dt_rank;
int const b_offset = params.dt_rank;
int const c_offset = params.dt_rank + DSTATE;
int num_tokens;
int start_token_idx;
if (params.remove_padding)
{
start_token_idx = sample == 0 ? 0 : params.last_token_ids_ptr[sample - 1];
int end_token_idx = params.last_token_ids_ptr[sample];
num_tokens = end_token_idx - start_token_idx;
}
else
{
start_token_idx = sample * params.max_seqlen;
num_tokens = params.last_token_ids_ptr[sample];
}
int const seq_loops = (num_tokens + SEQ_UNROLL - 1) / SEQ_UNROLL;
int const input_matrix_row_id = start_token_idx;
if (threadIdx.y == 1)
{
cuda::pipeline pipeline = cuda::make_pipeline(block, &pipeline_state, cuda::pipeline_role::producer);
int stage = 0;
for (int si = 0; si < seq_loops; si++)
{
pipeline.producer_acquire();
#pragma unroll
for (int token_id = si * SEQ_UNROLL; token_id < num_tokens && token_id < (si + 1) * SEQ_UNROLL; token_id++)
{
input_t* my_B = &B[(input_matrix_row_id + token_id) * bc_cols + b_offset];
input_t* my_C = &C[(input_matrix_row_id + token_id) * bc_cols + c_offset];
int block_channel_per_token = blockIdx.x * blockDim.x;
int block_channel
= input_matrix_row_id * num_channels + token_id * num_channels + block_channel_per_token;
if (threadIdx.x < DSTATE)
cuda::memcpy_async(&sh_B[stage][threadIdx.x], &my_B[threadIdx.x], sizeof(input_t), pipeline);
else if (threadIdx.x >= 32 && threadIdx.x < 32 + DSTATE)
cuda::memcpy_async(
&sh_C[stage][threadIdx.x - 32], &my_C[threadIdx.x - 32], sizeof(input_t), pipeline);
if (sizeof(input_t) == 4)
{
cuda::memcpy_async(&sh_dt[stage][threadIdx.x],
&dt[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t),
pipeline);
cuda::memcpy_async(&sh_x[stage][threadIdx.x],
&x[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t),
pipeline);
if (z)
cuda::memcpy_async(&sh_z[stage][threadIdx.x],
&z[input_matrix_row_id * num_channels + token_id * num_channels + channel], sizeof(input_t),
pipeline);
}
else
{
// sh_dt[stage][threadIdx.x] = dt[block_channel + threadIdx.x];
if (threadIdx.x < 32)
{
int tid = threadIdx.x;
float2* block_dt = (float2*) &dt[block_channel];
cuda::memcpy_async((float2*) &sh_dt[stage][tid * 4], &block_dt[tid], sizeof(float2), pipeline);
}
// sh_x[stage][threadIdx.x] = x[block_channel + threadIdx.x];
else if (threadIdx.x < 64)
{
int tid = threadIdx.x - 32;
float2* block_x = (float2*) &x[block_channel];
cuda::memcpy_async((float2*) &sh_x[stage][tid * 4], &block_x[tid], sizeof(float2), pipeline);
}
// sh_z[stage][threadIdx.x] = z[block_channel + threadIdx.x];
else if (threadIdx.x < 96)
{
int tid = threadIdx.x - 64;
if (z)
{
float2* block_z = (float2*) &z[block_channel];
cuda::memcpy_async(
(float2*) &sh_z[stage][tid * 4], &block_z[tid], sizeof(float2), pipeline);
}
}
else
{
}
}
stage++;
if (stage >= STAGES)
stage = 0;
}
pipeline.producer_commit();
}
}
else
{
// Compute warps
// Load state and A matrix into registers
float state_reg[DSTATE];
float A_reg[DSTATE];
for (int i = 0; i < DSTATE; i++)
{
state_reg[i] = 0.f;
A_reg[i] = toFloat(A[i * num_channels + channel]);
}
float dt_bias_reg = dt_bias[channel];
float D_reg = D ? D[channel] : 0.f;
cuda::pipeline pipeline = cuda::make_pipeline(block, &pipeline_state, cuda::pipeline_role::consumer);
int stage = 0;
for (int si = 0; si < seq_loops; si++)
{
pipeline.consumer_wait();
#pragma unroll
for (int token_id = si * SEQ_UNROLL; token_id < num_tokens && token_id < (si + 1) * SEQ_UNROLL; token_id++)
{
float dt_b = toFloat(sh_dt[stage][threadIdx.x]) + dt_bias_reg;
float dt_b_sp;
if (dt_softplus)
{
dt_b_sp = dt_b <= 20.f ? __logf(1.f + __expf(dt_b)) : dt_b; // softplus
}
float my_x = toFloat(sh_x[stage][threadIdx.x]);
float Dx = my_x * D_reg;
float dtx = dt_b_sp * my_x;
float my_z = z ? toFloat(sh_z[stage][threadIdx.x]) : 0.f;
float out = Dx;
if (sizeof(input_t) == 4)
{
float4* B4 = (float4*) &sh_B[stage][0];
float4* C4 = (float4*) &sh_C[stage][0];
#pragma unroll
for (int i = 0; i < DSTATE / 4; i++)
{
float4 Bi4 = B4[i];
float4 Ci4 = C4[i];
float* Bi = (float*) &Bi4;
float* Ci = (float*) &Ci4;
#pragma unroll
for (int j = 0; j < 4; j++)
{
float dtA = A_reg[i * 4 + j] * dt_b_sp;
float dA = __expf(dtA);
float sdA = state_reg[i * 4 + j] * dA;
float dBx = Bi[j] * dtx;
float newState = sdA + dBx;
state_reg[i * 4 + j] = newState;
out += newState * Ci[j];
}
}
}
else
{
float4* B8 = (float4*) &sh_B[stage][0];
float4* C8 = (float4*) &sh_C[stage][0];
#pragma unroll
for (int i = 0; i < DSTATE / 8; i++)
{
input_t* Bi = (input_t*) (&B8[i]);
input_t* Ci = (input_t*) (&C8[i]);
#pragma unroll
for (int j = 0; j < 8; j++)
{
float dtA = A_reg[i * 8 + j] * dt_b_sp;
float dA = __expf(dtA);
float sdA = state_reg[i * 8 + j] * dA;
float dBx = toFloat(Bi[j]) * dtx;
float newState = sdA + dBx;
state_reg[i * 8 + j] = newState;
out += newState * toFloat(Ci[j]);
}
}
}
if (z)
{
float enz = __expf(0.f - my_z);
enz += 1.0;
float sig_z = __fdividef(1.f, enz);
float silu_z = my_z * sig_z;
out *= silu_z;
}
input_t* my_output = &output[input_matrix_row_id * num_channels + token_id * num_channels];
convertAndStore(&my_output[channel], out);
stage++;
if (stage >= STAGES)
stage = 0;
}
pipeline.consumer_release();
}
// Write the new state back out to the cache
for (int i = 0; i < DSTATE; i++)
{
input_t* my_state = &state[slot_idx * num_channels * DSTATE];
int offset = i * num_channels + channel;
convertAndStore(&my_state[offset], state_reg[i]);
}
}
}
template <typename input_t, typename weight_t>
void invokeSelectiveScan(SSMParamsBase& params, cudaStream_t stream)
{
int samples = params.batch;
int channels = params.dim;
TLLM_CHECK(params.dstate == 16);
int const threads = 128;
int const blocks = (channels + threads - 1) / threads;
dim3 block(threads, 2);
dim3 grid(blocks, samples);
TLLM_CHECK((channels % block.x) == 0);
selective_scan_loop_kernel<input_t, weight_t><<<grid, block, 0, stream>>>(params);
}
template <typename input_t, typename weight_t>
void invokeChunkScan(SSMParamsBase& params, cudaStream_t stream, tensorrt_llm::common::CUDADriverWrapper* driver)
{
int B = params.batch;
int L = params.max_seqlen;
int H = params.nheads;
int P = params.dim / H;
int G = params.ngroups;
int N = params.dstate;
int Q = params.chunk_size;
int numTokens = params.num_tokens;
bool dtsp = params.delta_softplus;
bool hopper = tensorrt_llm::common::getSMVersion() >= 90 && tensorrt_llm::common::getSMVersion() < 100;
CudaType tp, wt;
if (std::is_same_v<input_t, half>)
tp = CT_FP16;
else if (std::is_same_v<input_t, __nv_bfloat16>)
tp = CT_BF16;
else
return;
if (std::is_same_v<weight_t, float>)
wt = CT_FP32;
else if (std::is_same_v<weight_t, input_t>)
wt = tp;
else
return;
dim3 bds[5], tds[5];
int shms[5], useTmas[5];
CUtensorMap descs_host[8];
ChunkCumsumKernelFunc chunk_cumsum
= getChunkCumsumKernel(B, L, H, P, G, N, Q, numTokens, &bds[0], &tds[0], &shms[0], tp, wt);
ChunkStateKernelFunc chunk_state = getChunkStateKernel(
B, L, H, P, G, N, Q, numTokens, hopper, driver, &bds[1], &tds[1], &shms[1], &useTmas[1], &descs_host[0], tp);
StatePassingKernelFunc state_passing
= getStatePassingKernel(B, L, H, P, G, N, Q, numTokens, &bds[2], &tds[2], &shms[2], tp);
BmmChunkKernelFunc bmm_chunk = getBmmChunkKernel(
B, L, H, P, G, N, Q, numTokens, hopper, driver, &bds[3], &tds[3], &shms[3], &useTmas[3], &descs_host[2], tp);
ChunkScanKernelFunc chunk_scan = getChunkScanKernel(B, L, H, P, G, N, Q, numTokens, hopper, driver, &bds[4],
&tds[4], &shms[4], &useTmas[4], &descs_host[4], tp, wt);
void* mxY = params.out_ptr;
void* mxOs = params.Os_ptr;
void* mxFs = params.x_ptr;
void* mxSt = params.St_ptr;
void* mxdc = params.dc_ptr;
void* mxdA = params.dA_ptr;
void const* mxdt = params.delta_ptr;
void const* mxdb = params.delta_bias_ptr;
void const* mxA = params.A_ptr;
void* mxCB = params.CB_ptr;
void const* mxD = params.D_ptr;
void const* mxXBC = params.u_ptr;
void const* mxZ = params.z_ptr;
if (useTmas[1] || useTmas[3] || useTmas[4])
{
// chunk_state
*(void**) &descs_host[0] = (input_t*) mxXBC + H * P; // B
*(void**) &descs_host[1] = (input_t*) mxXBC; // X
// bmm_chunk
*(void**) &descs_host[2] = (input_t*) mxXBC + H * P + G * N; // C
*(void**) &descs_host[3] = (input_t*) mxXBC + H * P; // B
// chunk_scan
*(void**) &descs_host[4] = (input_t*) mxXBC + H * P + G * N; // C
*(void**) &descs_host[5] = (input_t*) mxOs;
*(void**) &descs_host[6] = (input_t*) mxCB;
*(void**) &descs_host[7] = (input_t*) mxXBC; // X
cudaMemcpyAsync(params.desc_ptr, descs_host, sizeof(CUtensorMap) * 8, cudaMemcpyHostToDevice, stream);
cudaStreamSynchronize(stream); // to assure cudaMemcpyAsync is finished
}
CUtensorMap* descs = (CUtensorMap*) params.desc_ptr;
auto rp = params.remove_padding;
auto ltip = params.last_token_ids_ptr;
auto ssmp = params.slot_mapping_ptr;
cudaFuncSetAttribute(chunk_cumsum, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[0]);
chunk_cumsum<<<bds[0], tds[0], shms[0], stream>>>(
B, L, H, P, G, N, mxdc, mxdA, mxdt, mxdb, mxA, mxZ, rp, ltip, dtsp);
cudaFuncSetAttribute(chunk_state, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[1]);
chunk_state<<<bds[1], tds[1], shms[1], stream>>>(
B, L, H, P, G, N, mxSt, mxdc, mxdA, (useTmas[1] ? &descs[0] : mxXBC), rp, ltip);
cudaFuncSetAttribute(state_passing, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[2]);
state_passing<<<bds[2], tds[2], shms[2], stream>>>(B, L, H, P, G, N, mxOs, mxFs, mxSt, mxdA, rp, ltip, ssmp);
cudaFuncSetAttribute(bmm_chunk, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[3]);
bmm_chunk<<<bds[3], tds[3], shms[3], stream>>>(B, L, H, P, G, N, mxCB, (useTmas[3] ? &descs[2] : mxXBC), rp, ltip);
cudaFuncSetAttribute(chunk_scan, cudaFuncAttributeMaxDynamicSharedMemorySize, shms[4]);
chunk_scan<<<bds[4], tds[4], shms[4], stream>>>(
B, L, H, P, G, N, mxY, mxOs, mxdc, mxdA, mxCB, mxD, (useTmas[4] ? &descs[4] : mxXBC), mxZ, rp, ltip);
}
#define INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(input_t, weight_t) \
template void invokeSelectiveScan<input_t, weight_t>(SSMParamsBase & params, cudaStream_t stream);
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(float, float);
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(half, float);
#ifdef ENABLE_BF16
INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE(__nv_bfloat16, float);
#endif
#undef INSTANTIATE_SELECTIVE_SCAN_DATA_TYPE
#define INSTANTIATE_CHUNK_SCAN_DATA_TYPE(input_t, weight_t) \
template void invokeChunkScan<input_t, weight_t>( \
SSMParamsBase & params, cudaStream_t stream, tensorrt_llm::common::CUDADriverWrapper * driver);
INSTANTIATE_CHUNK_SCAN_DATA_TYPE(float, float);
INSTANTIATE_CHUNK_SCAN_DATA_TYPE(half, float);
#ifdef ENABLE_BF16
INSTANTIATE_CHUNK_SCAN_DATA_TYPE(__nv_bfloat16, float);
#endif
#undef INSTANTIATE_CHUNK_SCAN_DATA_TYPE
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename input_t, typename weight_t, int DSTATE = 16, int CHANNELS_PER_BLOCK = 128, bool MAMBA_V1 = true,
int STATE_UNROLL = 16>
__launch_bounds__(128, 2) __global__ void selective_scan_update_kernel(SSMParamsBase params)
{
input_t* output = reinterpret_cast<input_t*>(params.out_ptr);
input_t* state = reinterpret_cast<input_t*>(params.x_ptr);
input_t* x = reinterpret_cast<input_t*>(params.u_ptr);
input_t* dt = reinterpret_cast<input_t*>(params.delta_ptr);
weight_t* A = reinterpret_cast<weight_t*>(params.A_ptr);
input_t* B = reinterpret_cast<input_t*>(params.BC_ptr);
input_t* C = reinterpret_cast<input_t*>(params.BC_ptr);
weight_t* D = reinterpret_cast<weight_t*>(params.D_ptr);
input_t* z = reinterpret_cast<input_t*>(params.z_ptr);
weight_t* dt_bias = reinterpret_cast<weight_t*>(params.delta_bias_ptr);
bool dt_softplus = params.delta_softplus;
int num_channels = params.dim;
int nheads = params.nheads;
int ngroups = params.ngroups;
int const channel = blockIdx.x * blockDim.x + threadIdx.x;
if (channel >= num_channels)
return;
int const sample = blockIdx.y;
int const head_dim = num_channels / nheads;
int const head = channel / head_dim;
int const head_chl = channel % head_dim;
int const group = head / (nheads / ngroups);
int const slot_idx = params.slot_mapping_ptr == nullptr ? sample : params.slot_mapping_ptr[sample];
int const dt_d_idx = MAMBA_V1 ? channel : head;
int const bc_dim = MAMBA_V1 ? 2 * DSTATE : 2 * ngroups * params.dstate;
int const x_dim = MAMBA_V1 ? num_channels : num_channels + bc_dim;
int const z_dim = MAMBA_V1 ? num_channels : 2 * num_channels + bc_dim + (nheads + 7) / 8 * 8;
int const dt_dim = MAMBA_V1 ? num_channels : (z ? z_dim : z_dim - num_channels);
int const dt_offset = MAMBA_V1 ? sample * dt_dim : sample * dt_dim + dt_dim - (nheads + 7) / 8 * 8;
int const bc_offset = MAMBA_V1 ? sample * (bc_dim + params.dt_rank) : sample * (num_channels + bc_dim);
int const b_offset = MAMBA_V1 ? params.dt_rank : num_channels + params.dstate * group;
int const c_offset = MAMBA_V1 ? params.dt_rank + DSTATE : num_channels + params.dstate * (ngroups + group);
input_t* my_state = &state[slot_idx * num_channels * (MAMBA_V1 ? DSTATE : params.dstate)];
input_t* my_output = &output[sample * num_channels];
int const state_loops = ((MAMBA_V1 ? DSTATE : params.dstate) + STATE_UNROLL - 1) / STATE_UNROLL;
float my_x, my_dt, my_z, my_dt_bias, out;
my_x = toFloat(x[sample * x_dim + channel]);
my_z = z ? toFloat(z[sample * z_dim + channel]) : 0.f;
my_dt = toFloat(dt[dt_offset + dt_d_idx]);
my_dt_bias = dt_bias ? toFloat(dt_bias[dt_d_idx]) : 0.f;
out = D ? toFloat(D[dt_d_idx]) * my_x : 0.f;
float dt_b = my_dt + my_dt_bias;
float dt_b_sp = 1.0f;
if (dt_softplus)
{
dt_b_sp = dt_b <= 20.f ? __logf(1.f + __expf(dt_b)) : dt_b; // softplus
}
if (MAMBA_V1)
{
float rA[DSTATE];
float rB[DSTATE];
float rC[DSTATE];
float rState[DSTATE];
#pragma unroll
for (int i = 0; i < DSTATE; i++)
{
rA[i] = toFloat(A[i * num_channels + channel]);
rB[i] = toFloat(B[bc_offset + b_offset + i]);
rC[i] = toFloat(C[bc_offset + c_offset + i]);
rState[i] = toFloat(my_state[i * num_channels + channel]);
}
#pragma unroll
for (int i = 0; i < DSTATE; i++)
{
float dA = __expf(rA[i] * dt_b_sp);
float dB = rB[i] * dt_b_sp;
float sdA = rState[i] * dA;
float dBx = dB * my_x;
float newState = sdA + dBx;
// Write the new state back out to the cache
convertAndStore(&my_state[i * num_channels + channel], newState);
out += newState * rC[i];
}
}
else
{
float A_tmp = toFloat(A[head]);
float rB[STATE_UNROLL];
float rC[STATE_UNROLL];
float rState[STATE_UNROLL];
for (int si = 0; si < state_loops; si++)
{
int i_offset = si * STATE_UNROLL;
#pragma unroll
for (int i = 0; i < STATE_UNROLL; i++)
{
rB[i] = toFloat(B[bc_offset + b_offset + i_offset + i]);
rC[i] = toFloat(C[bc_offset + c_offset + i_offset + i]);
rState[i] = toFloat(
my_state[(head * (MAMBA_V1 ? DSTATE : params.dstate) + i_offset + i) * head_dim + head_chl]);
}
#pragma unroll
for (int i = 0; i < STATE_UNROLL; i++)
{
float dA = __expf(A_tmp * dt_b_sp);
float dB = rB[i] * dt_b_sp;
float sdA = rState[i] * dA;
float dBx = dB * my_x;
float newState = sdA + dBx;
// Write the new state back out to the cache
convertAndStore(
&my_state[(head * (MAMBA_V1 ? DSTATE : params.dstate) + i_offset + i) * head_dim + head_chl],
newState);
out += newState * rC[i];
}
}
}
if (z)
{
float sig_z = __fdividef(1.f, (1.f + __expf(0.f - my_z)));
float silu_z = my_z * sig_z;
out *= silu_z;
}
convertAndStore(&my_output[channel], out);
}
template <typename input_t, typename weight_t>
void invokeSelectiveScanUpdate(SSMParamsBase& params, cudaStream_t stream)
{
int samples = params.batch;
int channels = params.dim;
int nheads = params.nheads;
int ngroups = params.ngroups;
int const threads = 128;
int const blocks = (channels + threads - 1) / threads;
dim3 block(threads, 1);
dim3 grid(blocks, samples);
TLLM_CHECK_WITH_INFO(nheads % ngroups == 0, "nheads must be divisible by ngroups");
if (params.is_mamba2)
{
TLLM_CHECK(params.dstate % 16 == 0);
selective_scan_update_kernel<input_t, weight_t, 128, 128, false><<<grid, block, 0, stream>>>(params);
}
else
{
TLLM_CHECK(params.dstate == 16);
selective_scan_update_kernel<input_t, weight_t, 16, 128, true><<<grid, block, 0, stream>>>(params);
}
}
#define INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(input_t, weight_t) \
template void invokeSelectiveScanUpdate<input_t, weight_t>(SSMParamsBase & params, cudaStream_t stream)
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(float, float);
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(half, float);
#ifdef ENABLE_BF16
INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE(__nv_bfloat16, float);
#endif
#undef INSTANTIATE_SELECTIVE_SCAN_UPDATE_DATA_TYPE
} // namespace kernels
} // namespace tensorrt_llm