TensorRT-LLMs/cpp/include/tensorrt_llm/batch_manager/rnnStateManager.h
Iman Tabrizian 7d992972b2
[TRTLLM-10273][feat] Move MambaCacheManager from Python to C++ (#10540)
Signed-off-by: Iman Tabrizian <10105175+tabrizian@users.noreply.github.com>
2026-02-10 07:20:56 -08:00

88 lines
3.6 KiB
C++

/*
* Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/batch_manager/common.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include <optional>
#include <unordered_map>
#include <vector>
namespace tensorrt_llm::batch_manager::rnn_state_manager
{
class RnnStateManager
{
public:
using TensorPtr = runtime::ITensor::SharedPtr;
using SizeType32 = tensorrt_llm::runtime::SizeType32;
using TensorMap = runtime::StringPtrMap<runtime::ITensor>;
using RequestIdType = tensorrt_llm::batch_manager::RequestIdType;
RnnStateManager(SizeType32 maxNumSequences, tensorrt_llm::runtime::ModelConfig const& modelConfig,
runtime::WorldConfig const& worldConfig, tensorrt_llm::runtime::BufferManager const& bufferManager);
RnnStateManager(SizeType32 dState, SizeType32 dConv, SizeType32 numHeads, SizeType32 nGroups, SizeType32 headDim,
SizeType32 maxBatchSize, runtime::WorldConfig const& worldConfig, int64_t stream, nvinfer1::DataType dtype,
nvinfer1::DataType ssmCacheDtype, std::vector<SizeType32> const& ppLayers);
void getPtrBuffers(TensorMap& inputBuffers, runtime::ModelConfig const& modelConfig,
runtime::WorldConfig const& worldConfig) const;
void fillSlotMapping(
runtime::ITensor& dstPointers, SizeType32 dstSlotOffset, SizeType32 seqSlotIdx, SizeType32 beamWidth) const;
void allocateCacheBlocks(std::vector<RequestIdType> const& requestIds);
void freeCacheBlock(RequestIdType requestId);
[[nodiscard]] SizeType32 getCacheIndex(RequestIdType requestId) const;
[[nodiscard]] std::vector<SizeType32> getStateIndices(
std::vector<RequestIdType> const& requestIds, std::vector<bool> const& isPadding);
[[nodiscard]] TensorPtr getConvStates(SizeType32 layerIdx) const;
[[nodiscard]] TensorPtr getSsmStates(SizeType32 layerIdx) const;
private:
// If we need support beam search, we may need mMaxBeamWidth + 1 slots and use separate input / output states.
TensorPtr pagedRnnStates; // [local_nb_layers, max_seq_num * max_beam_width, state_size, rnn_hidden_size] or
// [local_nb_layers, max_seq_num * max_beam_width, num_heads, state_size, rnn_head_size]
TensorPtr pagedConvStates; // [local_nb_layers, max_seq_num * max_beam_width, conv_kernel - 1, rnn_hidden_size]
TensorPtr rnnStatePtrs; // [layer_count]
TensorPtr convStatePtrs; // [layer_count]
std::vector<TensorPtr> rnnStatePtr; // [1]
std::vector<TensorPtr> convStatePtr; // [1]
SizeType32 mMaxNumSequences = 0;
SizeType32 mMaxBeamWidth = 0;
SizeType32 mBeamSlotsPerSequence = 0;
std::unordered_map<SizeType32, SizeType32> mLayerOffsets;
std::vector<SizeType32> mFreeBlocks;
std::unordered_map<RequestIdType, SizeType32> mCacheIndex;
std::optional<runtime::BufferManager> mBufferManager;
};
} // namespace tensorrt_llm::batch_manager::rnn_state_manager