TensorRT-LLMs/tensorrt_llm/_torch/modules/linear.py
DylanChen-NV 5ca2b9bb15
[TRTLLM-5812][feat] support FP8 row-wise dense GEMM in torch flow (#5615)
Signed-off-by: Dylan Chen <191843203+DylanChen-NV@users.noreply.github.com>
2025-07-07 18:04:57 +08:00

1200 lines
51 KiB
Python

from __future__ import annotations
import enum
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.parameter import Parameter
import tensorrt_llm.quantization.utils.fp4_utils as fp4_utils
from tensorrt_llm._torch.peft.lora.layer import LoraLayer
from tensorrt_llm.functional import (AllReduceFusionOp, AllReduceParams,
AllReduceStrategy)
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.quantization.functional import \
preprocess_weights_for_mixed_gemm
from tensorrt_llm.quantization.mode import QuantAlgo
from ...models.modeling_utils import QuantConfig
from ..utils import Fp4QuantizedTensor
class WeightMode(str, enum.Enum):
# weight of a vanilla layer
VANILLA = 'vanilla'
# weight of a fused QKV linear layer
FUSED_QKV_LINEAR = 'fused_qkv_linear'
# weight of a fused gate and up linear layer
FUSED_GATE_UP_LINEAR = 'fused_gate_up_linear'
@dataclass(kw_only=True)
class WeightsLoadingConfig:
weight_mode: WeightMode = WeightMode.VANILLA
ignore_tensor_parallel: bool = False
class TensorParallelMode(str, enum.Enum):
COLUMN = 'column'
ROW = 'row'
@classmethod
def split_dim(cls, mode):
return 1 if mode == cls.ROW else 0
def load_weight_shard(
weight,
tensor_parallel_size: int = 1,
tensor_parallel_rank: int = 0,
tensor_parallel_mode: Optional[TensorParallelMode] = None,
device: torch.device = torch.device('cpu'),
) -> torch.Tensor:
if isinstance(weight, torch.Tensor):
tensor_shape = weight.shape
def maybe_convert_to_torch_tensor(tensor: torch.Tensor,
indices: slice = None):
if indices is None:
# Avoid unnecessary copy
return tensor.to(device)
else:
return tensor[indices].to(device)
# WAR to check whether it is a safetensor slice since safetensor didn't register the type to the module
# safetensors slice, supports lazy loading, type(weight) is `builtin.PySafeSlice`
elif hasattr(weight, "get_shape"):
tensor_shape = weight.get_shape()
def maybe_convert_to_torch_tensor(
tensor, indices: Union[slice, tuple[slice]] = slice(None)):
return tensor[indices].to(device)
else:
raise ValueError(f'unsupported weight type: {type(weight)}')
if tensor_parallel_mode is None or tensor_parallel_size <= 1:
return maybe_convert_to_torch_tensor(weight)
split_dim = TensorParallelMode.split_dim(tensor_parallel_mode)
if len(tensor_shape) == 1 and split_dim == 1:
return maybe_convert_to_torch_tensor(weight)
width = tensor_shape[split_dim]
if width == 1:
return maybe_convert_to_torch_tensor(weight)
slice_width = math.ceil(width / tensor_parallel_size)
slice_start = tensor_parallel_rank * slice_width
slice_end = min((tensor_parallel_rank + 1) * slice_width, width)
slice_obj = [slice(None)] * len(tensor_shape)
slice_obj[split_dim] = slice(slice_start, slice_end)
return maybe_convert_to_torch_tensor(weight, tuple(slice_obj))
def copy_weight(dst: Parameter, src: torch.Tensor):
# TODO check that is it a reasonable change or not
if dst.dtype != src.dtype:
src = src.to(dst.dtype)
assert dst.dtype == src.dtype, f"Incompatible dtype. dst: {dst.dtype}, src: {src.dtype}"
dst.data.copy_(src)
def load_weights_vanilla_helper(module: Linear, weights: List[Dict]):
assert len(weights) == 1
device = torch.device('cuda')
weight = load_weight_shard(weights[0]['weight'], module.tp_size,
module.tp_rank, module.tp_mode, device)
if module.has_w4a16_awq:
# NOTE: without the preprocess during the runtime, the gemm output nan's. in order to use the preprocess_weights_for_mixed_gemm
# we need to cast the weight to int8 first.
weight = preprocess_weights_for_mixed_gemm(
weight.T.to(torch.int8).contiguous().cpu(), torch.quint4x2,
torch.float16).cuda().contiguous()
copy_weight(module.weight, weight)
if module.bias is not None:
bias = load_weight_shard(weights[0]['bias'], module.tp_size,
module.tp_rank, module.tp_mode, device)
copy_weight(module.bias, bias)
def load_weights_fused_qkv_helper(
module: Linear,
weights: List[Dict]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
assert len(weights) == 3
device = torch.device('cuda')
q_weight = load_weight_shard(weights[0]['weight'], module.tp_size,
module.tp_rank, module.tp_mode, device)
k_weight = load_weight_shard(weights[1]['weight'], module.tp_size,
module.tp_rank, module.tp_mode, device)
v_weight = load_weight_shard(weights[2]['weight'], module.tp_size,
module.tp_rank, module.tp_mode, device)
if module.bias is not None:
q_bias = load_weight_shard(weights[0]['bias'], module.tp_size,
module.tp_rank, module.tp_mode, device)
k_bias = load_weight_shard(weights[1]['bias'], module.tp_size,
module.tp_rank, module.tp_mode, device)
v_bias = load_weight_shard(weights[2]['bias'], module.tp_size,
module.tp_rank, module.tp_mode, device)
copy_weight(module.bias, torch.cat((q_bias, k_bias, v_bias)))
return (q_weight, k_weight, v_weight)
def load_weights_fused_gate_up_helper(
module: Linear,
weights: List[Dict]) -> tuple[torch.Tensor, torch.Tensor]:
assert len(weights) == 2
device = torch.device('cuda')
gate_weight = load_weight_shard(weights[0]['weight'], module.tp_size,
module.tp_rank, module.tp_mode, device)
up_weight = load_weight_shard(weights[1]['weight'], module.tp_size,
module.tp_rank, module.tp_mode, device)
if module.bias is not None:
gate_bias = load_weight_shard(weights[0]['bias'], module.tp_size,
module.tp_rank, module.tp_mode, device)
up_bias = load_weight_shard(weights[1]['bias'], module.tp_size,
module.tp_rank, module.tp_mode, device)
copy_weight(module.bias, torch.cat((up_bias, gate_bias)))
return (gate_weight, up_weight)
class LinearMethodBase(ABC):
"""
Base class for all linear methods.
"""
@abstractmethod
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype, *args,
**kwargs):
raise NotImplementedError
@abstractmethod
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor], *args, **kwargs):
raise NotImplementedError
def load_weights(self, module: Linear, weights: List[Dict],
weight_mode: WeightMode):
"""
Load weights from the checkpoint.
"""
if weight_mode == WeightMode.VANILLA:
self.load_weights_vanilla(module, weights)
elif weight_mode == WeightMode.FUSED_QKV_LINEAR:
self.load_weights_fused_qkv_linear(module, weights)
elif weight_mode == WeightMode.FUSED_GATE_UP_LINEAR:
self.load_weights_fused_gate_up_linear(module, weights)
else:
raise ValueError(f'unsupported weight mode: {weight_mode}')
def load_weight_scales(self, weights: List[Dict], *args, **kwargs):
"""
Load quantized weight scales from the checkpoint.
"""
@abstractmethod
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
"""
Load weights for the VANILLA weight mode.
"""
raise NotImplementedError
@abstractmethod
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
"""
Load weights for the FUSED_QKV_LINEAR weight mode.
"""
raise NotImplementedError
@abstractmethod
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
"""
Load weights for the FUSED_GATE_UP_LINEAR weight mode.
"""
raise NotImplementedError
class UnquantizedLinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype):
weight_shape = (out_features, in_features)
module.weight = Parameter(torch.empty(weight_shape, dtype=dtype),
requires_grad=False)
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]):
if module.use_custom_cublas_mm:
output = torch.ops.trtllm.cublas_mm(input,
module.weight.t(),
bias,
out_dtype=None)
else:
output = F.linear(input, module.weight, bias)
return output
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
fused_weight = torch.cat((q_weight, k_weight, v_weight))
copy_weight(module.weight, fused_weight)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
fused_weight = torch.cat((gate_weight, up_weight))
copy_weight(module.weight, fused_weight)
class FP8QDQLinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype):
weight_shape = (out_features, in_features)
module.weight = Parameter(torch.empty(weight_shape,
dtype=torch.float8_e4m3fn),
requires_grad=False)
module.weight_scale = Parameter(torch.tensor(1., dtype=torch.float32),
requires_grad=False)
module.input_scale = Parameter(torch.tensor(1., dtype=torch.float32),
requires_grad=False)
module.inv_input_scale = Parameter(torch.tensor(1.,
dtype=torch.float32),
requires_grad=False)
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]):
cur_input_scale = module.input_scale
if input.dtype != torch.float8_e4m3fn:
if module.input_scale is not None and not module.force_dynamic_quantization:
# Static quantization
qinput, _ = torch.ops.tensorrt_llm.static_quantize_e4m3_per_tensor(
input, module.input_scale)
else:
# Dynamic quantization
qinput, cur_input_scale = torch.ops.tensorrt_llm.quantize_e4m3_per_tensor(
input)
cur_input_scale = cur_input_scale.to(torch.float32)
else:
qinput = input
# This op does not support bias now.
output = torch.ops.trtllm.cublas_scaled_mm(
qinput,
module.weight.t(),
scale_a=cur_input_scale,
scale_b=module.weight_scale,
bias=None,
out_dtype=module.dtype or input.dtype,
)
if bias is not None:
output = output + bias
return output
def load_weight_scales(self, weights: List[Dict]):
input_scale, weight_scale = [], []
for w in weights:
if "input_scale" in w:
input_scale.append(w["input_scale"][...].reshape([]))
if "weight_scale" in w:
weight_scale.append(w["weight_scale"][...].reshape([]))
return input_scale, weight_scale
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)
input_scale, weight_scale = self.load_weight_scales(weights)
if len(input_scale) != 0:
# Static quantization
copy_weight(module.input_scale, input_scale[0])
module.inv_input_scale.data = 1.0 / module.input_scale
else:
# Dynamic quantization
module.input_scale = None
module.inv_input_scale = None
copy_weight(module.weight_scale, weight_scale[0])
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
input_scale, weight_scale = self.load_weight_scales(weights)
if len(input_scale) != 0:
# Static quantization
copy_weight(module.input_scale, max(input_scale))
else:
# Dynamic quantization
module.input_scale = None
copy_weight(module.weight_scale, max(weight_scale))
q_weight = q_weight.to(module.dtype) * weight_scale[0]
k_weight = k_weight.to(module.dtype) * weight_scale[1]
v_weight = v_weight.to(module.dtype) * weight_scale[2]
fused_weight = torch.cat((q_weight, k_weight, v_weight))
if module.weight_scale.device != fused_weight.device:
module.weight_scale = Parameter(
module.weight_scale.data.to(fused_weight.device))
fused_weight = (fused_weight / module.weight_scale).to(
torch.float8_e4m3fn)
copy_weight(module.weight, fused_weight)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
input_scale, weight_scale = self.load_weight_scales(weights)
if len(input_scale) != 0:
# Static quantization
copy_weight(module.input_scale, max(input_scale))
else:
# Dynamic quantization
module.input_scale = None
copy_weight(module.weight_scale, max(weight_scale))
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
gate_weight = gate_weight.to(module.dtype) * weight_scale[0]
up_weight = up_weight.to(module.dtype) * weight_scale[1]
fused_weight = torch.cat((gate_weight, up_weight))
if module.weight_scale.device != fused_weight.device:
module.weight_scale = Parameter(
module.weight_scale.data.to(fused_weight.device))
fused_weight = (fused_weight / module.weight_scale).to(
torch.float8_e4m3fn)
copy_weight(module.weight, fused_weight)
class FP8RowwiseLinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype):
weight_shape = (out_features, in_features)
module.weight = Parameter(torch.empty(weight_shape,
dtype=torch.float8_e4m3fn),
requires_grad=False)
module.weight_scale = Parameter(torch.empty(out_features),
requires_grad=False)
# Not really used for Gemm now.
# Only used to quantize output of FP8 attention.
module.input_scale = Parameter(torch.tensor(1., dtype=torch.float32),
requires_grad=False)
module.inv_input_scale = Parameter(torch.tensor(1.,
dtype=torch.float32),
requires_grad=False)
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]):
# FP8 tensor inputs are from attention. Directly use ones as scale.
if input.dtype == torch.float8_e4m3fn:
qinput = input
cur_input_scale = torch.ones(input.shape[0],
device=input.device,
dtype=torch.float32)
else:
# Use dynamic per-token quantization for activation
qinput, cur_input_scale = torch.ops.tensorrt_llm.quantize_e4m3_activation(
input)
# This op does not support bias now.
output = torch.ops.trtllm.fp8_rowwise_gemm(
qinput,
module.weight,
cur_input_scale.float(),
module.weight_scale,
module.dtype or input.dtype,
)
if bias is not None:
output = output + bias
return output
def _get_scale_name(self, weights: List[Dict]):
# `weight_scale_inv` for DS recipe and `weight_scale` for ModelOpt recipe.
# Actually they hold identical values of data_amax / 448.
scale_name = "weight_scale_inv"
if scale_name not in weights[0]:
scale_name = "weight_scale"
return scale_name
def load_weights_vanilla(self, module: Linear, weights: List[Dict]):
load_weights_vanilla_helper(module, weights)
scale_name = self._get_scale_name(weights)
weight_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
copy_weight(module.weight_scale, weight_scale)
if "input_scale" in weights[0]:
copy_weight(module.input_scale, weights[0]["input_scale"])
module.inv_input_scale.data = 1.0 / module.input_scale
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]):
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
fused_weight = torch.cat((q_weight, k_weight, v_weight))
copy_weight(module.weight, fused_weight)
scale_name = self._get_scale_name(weights)
q_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
k_scale = load_weight_shard(weights[1][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
v_scale = load_weight_shard(weights[2][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
fused_fp8_block_scale = torch.cat((q_scale, k_scale, v_scale))
copy_weight(module.weight_scale, fused_fp8_block_scale)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]):
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
fused_weight = torch.cat((gate_weight, up_weight))
copy_weight(module.weight, fused_weight)
scale_name = self._get_scale_name(weights)
left_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
right_scale = load_weight_shard(weights[1][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
fused_scale = torch.cat((left_scale, right_scale))
copy_weight(module.weight_scale, fused_scale)
class FP8BlockScalesLinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype):
weight_shape = (out_features, in_features)
module.weight = Parameter(torch.empty(weight_shape,
dtype=torch.float8_e4m3fn),
requires_grad=False)
scale_shape = (math.ceil(out_features / 128),
math.ceil(in_features / 128))
module.weight_scale = Parameter(torch.empty(scale_shape,
dtype=torch.float32),
requires_grad=False)
# Not really used for Gemm now.
# Only used to quantize output of FP8 attention.
module.input_scale = Parameter(torch.tensor(1., dtype=torch.float32),
requires_grad=False)
module.inv_input_scale = Parameter(torch.tensor(1.,
dtype=torch.float32),
requires_grad=False)
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]):
if input.dtype == torch.float8_e4m3fn:
input = input.to(torch.bfloat16) * module.input_scale
assert input.dtype == torch.bfloat16
act_input_fp8, act_input_sf = torch.ops.trtllm.fp8_quantize_1x128(input)
output = torch.ops.trtllm.fp8_block_scaling_gemm(
act_input_fp8, module.weight, act_input_sf, module.weight_scale)
if bias is not None:
output = output + bias
return output
def _get_scale_name(self, weights: List[Dict]):
# `weight_scale_inv` for DS recipe and `weight_scale` for ModelOpt recipe.
# Actually they hold identical values of data_amax / 448.
scale_name = "weight_scale_inv"
if scale_name not in weights[0]:
scale_name = "weight_scale"
return scale_name
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)
scale_name = self._get_scale_name(weights)
weight_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
copy_weight(module.weight_scale, weight_scale)
if "input_scale" in weights[0]:
copy_weight(module.input_scale, weights[0]["input_scale"])
module.inv_input_scale.data = 1.0 / module.input_scale
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
fused_weight = torch.cat((q_weight, k_weight, v_weight))
copy_weight(module.weight, fused_weight)
scale_name = self._get_scale_name(weights)
q_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
k_scale = load_weight_shard(weights[1][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
v_scale = load_weight_shard(weights[2][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
fused_fp8_block_scale = torch.cat((q_scale, k_scale, v_scale))
copy_weight(module.weight_scale, fused_fp8_block_scale)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
fused_weight = torch.cat((gate_weight, up_weight))
copy_weight(module.weight, fused_weight)
scale_name = self._get_scale_name(weights)
left_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
right_scale = load_weight_shard(weights[1][scale_name], module.tp_size,
module.tp_rank, module.tp_mode)
fused_scale = torch.cat([left_scale, right_scale], dim=0)
copy_weight(module.weight_scale, fused_scale)
class NVFP4LinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype):
module.scaling_vector_size = 16
assert in_features % module.scaling_vector_size == 0, f"in_features {in_features} must be divisible by scaling_vector_size {module.scaling_vector_size}"
# Quantized weights
module.weight = Parameter(torch.empty([out_features, in_features // 2],
dtype=fp4_utils.float4_e2m1x2),
requires_grad=False)
# FP8 per-block scaling factors. dtype must be aligned with SF_DTYPE
# Padding is required. See computeSFSize in quantization.h
nrows = fp4_utils.pad_up(out_features, 128)
ncols = fp4_utils.pad_up(in_features // module.scaling_vector_size, 4)
module.weight_scale = Parameter(torch.empty(
[nrows * ncols], dtype=fp4_utils.float4_sf_dtype),
requires_grad=False)
# FP32 per-tensor global scaling factor = 448*6/amax_input
module.input_scale = Parameter(torch.empty([1], dtype=torch.float32),
requires_grad=False)
module.inv_input_scale = Parameter(torch.empty([1],
dtype=torch.float32),
requires_grad=False)
# (amax_input * amax_weight) / (448*6 * 448*6)
module.alpha = Parameter(torch.empty([1], dtype=torch.float32),
requires_grad=False)
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]):
if isinstance(input, Fp4QuantizedTensor):
act_fp4, act_sf = input.fp4_tensor, input.scaling_factor
else:
act_fp4, act_sf = torch.ops.trtllm.fp4_quantize(
input, module.input_scale, module.scaling_vector_size, False)
output = torch.ops.trtllm.nvfp4_gemm(act_fp4, module.weight, act_sf,
module.weight_scale, module.alpha,
module.dtype)
if bias is not None:
output = output + bias
return output
def load_weight_scales(self,
weights: List[Dict],
tp_size: int = 1,
tp_rank: int = 0,
tp_mode: Optional[TensorParallelMode] = None):
# For concatenated weights (qkv_proj / up_gate_proj), the global scaling factors and input scaling factors should be shared.
input_scale = None
weight_scale_2 = None
weight_scale = []
device = torch.device("cuda")
for w in weights:
if "input_scale" in w:
if input_scale is None:
input_scale = w["input_scale"][...]
else:
assert input_scale == w["input_scale"][
...], "The input_scale should be same for all the weights"
if "weight_scale" in w:
ws = load_weight_shard(w["weight_scale"],
tp_size,
tp_rank,
tp_mode,
device=device).contiguous()
assert ws.dtype == torch.float8_e4m3fn # TODO: or e8m0 for mxfp4 recipe?
weight_scale.append(ws.view(fp4_utils.float4_sf_dtype))
if "weight_scale_2" in w:
if weight_scale_2 is None:
weight_scale_2 = w["weight_scale_2"][...]
else:
assert weight_scale_2 == w["weight_scale_2"][
...], "The weight_scale_2 should be same for all the weights"
# Compute scaling factor and alpha required by GEMM kernels
# TODO: ModelOpt's o_proj.weight_scale_2 is bfloat16, which should be float32
alpha = input_scale.float() * weight_scale_2.float()
# modelopt ckpt stores amax/(448*6), convert to (448*6)/amax
input_scale = 1.0 / input_scale
return input_scale, weight_scale, alpha
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)
input_scale, weight_scale, alpha = self.load_weight_scales(
weights,
tp_size=module.tp_size,
tp_rank=module.tp_rank,
tp_mode=module.tp_mode)
assert len(weights) == 1
weight_scale = weight_scale[0]
# Swizzle weight scale
weight_scale = torch.ops.trtllm.nvfp4_block_scale_interleave(
weight_scale)
copy_weight(module.input_scale, input_scale)
copy_weight(module.weight_scale, weight_scale)
E2M1_MAX = 6.0
module.inv_input_scale.data = module.input_scale / E2M1_MAX
copy_weight(module.alpha, alpha)
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
input_scale, weight_scales, alpha = self.load_weight_scales(
weights,
tp_size=module.tp_size,
tp_rank=module.tp_rank,
tp_mode=module.tp_mode)
# Swizzle weight scales after concatenation
weight_scale = torch.cat(weight_scales, 0)
weight_scale = torch.ops.trtllm.nvfp4_block_scale_interleave(
weight_scale)
copy_weight(module.input_scale, input_scale)
copy_weight(module.weight_scale, weight_scale)
copy_weight(module.alpha, alpha)
fused_weight = torch.cat((q_weight, k_weight, v_weight))
copy_weight(module.weight, fused_weight)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
fused_weight = torch.cat((gate_weight, up_weight))
copy_weight(module.weight, fused_weight)
input_scale, weight_scales, alpha = self.load_weight_scales(
weights,
tp_size=module.tp_size,
tp_rank=module.tp_rank,
tp_mode=module.tp_mode)
# Swizzle weight scales after concatenation
weight_scale = torch.cat(weight_scales, 0)
weight_scale = torch.ops.trtllm.nvfp4_block_scale_interleave(
weight_scale)
copy_weight(module.input_scale, input_scale)
copy_weight(module.weight_scale, weight_scale)
copy_weight(module.alpha, alpha)
class W4A8MXFP4FP8LinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool, dtype: torch.dtype):
module.scaling_vector_size = 32
assert module.in_features % module.scaling_vector_size == 0, f"in_features {module.in_features} must be divisible by scaling_vector_size {module.scaling_vector_size}"
# Quantized weights
module.weight = Parameter(torch.empty(
[module.out_features, module.in_features // 2],
dtype=fp4_utils.float4_e2m1x2),
requires_grad=False)
# FP8 per-block scaling factors. dtype must be aligned with SF_DTYPE
# Padding is required. See computeSFSize in quantization.h
nrows = fp4_utils.pad_up(module.out_features, 128)
ncols = fp4_utils.pad_up(
module.in_features // module.scaling_vector_size, 4)
module.weight_scale = Parameter(torch.empty(
[nrows * ncols], dtype=fp4_utils.float4_sf_dtype),
requires_grad=False)
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]):
fp8_input, input_scale = torch.ops.tensorrt_llm.quantize_e4m3_per_tensor(
input)
input_scale = input_scale.to(torch.float32)
nrows = fp4_utils.pad_up(input.shape[0], 128)
ncols = fp4_utils.pad_up(input.shape[1] // module.scaling_vector_size,
4)
# 01111111 is 2^(127 - 127) = 1 in E8M0
module.fake_act_scale = torch.empty(
[nrows * ncols], dtype=torch.uint8,
device=fp8_input.device).fill_(127).view(fp4_utils.float4_sf_dtype)
output = torch.ops.trtllm.w4a8_mxfp4_fp8_gemm(fp8_input, module.weight,
module.fake_act_scale,
module.weight_scale,
input_scale, module.dtype)
if bias is not None:
output = output + bias
return output
def load_weight_scales(self,
weights: List[Dict],
tp_size: int = 1,
tp_rank: int = 0,
tp_mode: Optional[TensorParallelMode] = None):
# For concatenated weights (qkv_proj / up_gate_proj), the global scaling factors and input scaling factors should be shared.
weight_scale = []
device = torch.device("cuda")
for w in weights:
if "weight_scale" in w:
ws = load_weight_shard(w["weight_scale"],
tp_size,
tp_rank,
tp_mode,
device=device).contiguous()
# Should be E8M0 for MXFP4
assert ws.dtype == torch.uint8
weight_scale.append(ws.view(fp4_utils.float4_sf_dtype))
return weight_scale
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)
weight_scale = self.load_weight_scales(weights,
tp_size=module.tp_size,
tp_rank=module.tp_rank,
tp_mode=module.tp_mode)
assert len(weights) == 1
weight_scale = weight_scale[0]
# Swizzle weight scale
weight_scale = torch.ops.trtllm.nvfp4_block_scale_interleave(
weight_scale)
copy_weight(module.weight_scale, weight_scale)
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
fused_weight = torch.cat((q_weight, k_weight, v_weight))
copy_weight(module.weight, fused_weight)
weight_scale = self.load_weight_scales(weights,
tp_size=module.tp_size,
tp_rank=module.tp_rank,
tp_mode=module.tp_mode)
weight_scale = torch.cat(weight_scale, 0)
weight_scale = torch.ops.trtllm.nvfp4_block_scale_interleave(
weight_scale)
copy_weight(module.weight_scale, weight_scale)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
fused_weight = torch.cat((gate_weight, up_weight))
copy_weight(module.weight, fused_weight)
weight_scale = self.load_weight_scales(weights,
tp_size=module.tp_size,
tp_rank=module.tp_rank,
tp_mode=module.tp_mode)
# Swizzle weight scales after concatenation
weight_scale = torch.cat(weight_scale, 0)
weight_scale = torch.ops.trtllm.nvfp4_block_scale_interleave(
weight_scale)
copy_weight(module.weight_scale, weight_scale)
class W4A16_AWQ_LinearMethod(LinearMethodBase):
def create_weights(self, module: Linear, in_features: int,
out_features: int, bias: bool,
dtype: torch.dtype) -> None:
# Quantized weights
module.weight = Parameter(torch.empty(
(in_features, out_features // 2),
dtype=torch.int8,
),
requires_grad=False)
group_size = module.quant_config.group_size
if in_features % group_size != 0:
raise ValueError(
f"in_features ({self.in_features}) must be divisible by group_size ({group_size}) "
f"for INT4 per-group quantization scale dimensions.")
module.weight_scale = Parameter(torch.empty(
(out_features, in_features // group_size), dtype=dtype),
requires_grad=False)
# NOTE: Not in all linear we have this tensor - pre_quant_scale is computed as an average and merged with the
# LayerNorm for QKV and Gate/Up projection layers when possible. we can see the tensor only for o_proj and down_proj
module.pre_quant_scale = None
if bias:
module.bias = Parameter(torch.empty((out_features), dtype=dtype),
requires_grad=False)
else:
module.register_parameter("bias", None)
def apply(self, module: Linear, input: torch.Tensor,
bias: Optional[torch.Tensor]) -> torch.Tensor:
if module.pre_quant_scale is not None:
pre_quant_scale = module.pre_quant_scale.repeat(input.shape[0], 1)
input = torch.mul(input, pre_quant_scale)
bias = bias.contiguous() if bias is not None else None
output = torch.ops.trtllm.w4a16_gemm(input.to(
module.dtype).contiguous(),
module.weight,
module.weight_scale.T.contiguous(),
module.quant_config.group_size,
module.quant_config.has_zero_point,
bias,
zeros=None)
return output
def load_weight_scales(
self,
weights: List[Dict],
tp_size: int = 1,
tp_rank: int = 0,
tp_mode: Optional[TensorParallelMode] = None) -> List[torch.Tensor]:
device = torch.device("cuda")
q_weight_scale = load_weight_shard(weights[0]['weight_scale'],
tp_size,
tp_rank,
tp_mode,
device=device)
k_weight_scale = load_weight_shard(weights[1]['weight_scale'],
tp_size,
tp_rank,
tp_mode,
device=device)
v_weight_scale = load_weight_shard(weights[2]['weight_scale'],
tp_size,
tp_rank,
tp_mode,
device=device)
weight_scales = [q_weight_scale, k_weight_scale, v_weight_scale]
return weight_scales
def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)
device = torch.device('cuda')
pre_quant_scale = load_weight_shard(weights[0]['pre_quant_scale'],
module.tp_size, module.tp_rank,
module.tp_mode, device)
module.pre_quant_scale = Parameter(
torch.ones((module.in_features, ), dtype=pre_quant_scale.dtype),
requires_grad=False).to(device=device)
weight_scale = load_weight_shard(weights[0]['weight_scale'],
module.tp_size, module.tp_rank,
module.tp_mode, device)
copy_weight(module.pre_quant_scale, pre_quant_scale)
copy_weight(module.weight_scale, weight_scale)
def load_weights_fused_qkv_linear(self, module: Linear,
weights: List[Dict]) -> None:
q_weight, k_weight, v_weight = load_weights_fused_qkv_helper(
module, weights)
fused_weight = torch.cat((q_weight, k_weight, v_weight))
fused_weight = preprocess_weights_for_mixed_gemm(
fused_weight.to(torch.int8).T.contiguous().cpu(), torch.quint4x2,
torch.float16).cuda().contiguous()
copy_weight(module.weight, fused_weight)
weight_scales = self.load_weight_scales(weights)
# Create concatenated weight scale tensor
cat_weight_scale = torch.cat(weight_scales, dim=0)
copy_weight(module.weight_scale, cat_weight_scale)
def load_weights_fused_gate_up_linear(self, module: Linear,
weights: List[Dict]) -> None:
device = torch.device('cuda')
gate_weight, up_weight = load_weights_fused_gate_up_helper(
module, weights)
fused_weight = torch.cat((gate_weight, up_weight))
fused_weight = preprocess_weights_for_mixed_gemm(
fused_weight.to(torch.int8).T.contiguous().cpu(), torch.quint4x2,
torch.float16).cuda().contiguous()
copy_weight(module.weight, fused_weight)
left_scale = load_weight_shard(weights[0]['weight_scale'],
module.tp_size, module.tp_rank,
module.tp_mode, device).contiguous()
right_scale = load_weight_shard(weights[1]['weight_scale'],
module.tp_size, module.tp_rank,
module.tp_mode, device).contiguous()
fused_scale = torch.cat([left_scale, right_scale], dim=0)
copy_weight(module.weight_scale, fused_scale)
def get_quant_method(quant_config: Optional[QuantConfig] = None):
if quant_config is None or not quant_config.layer_quant_mode.has_any_quant(
exclude_kv_cache=True):
return UnquantizedLinearMethod()
if quant_config.layer_quant_mode.has_fp8_qdq():
return FP8QDQLinearMethod()
if quant_config.layer_quant_mode.has_fp8_rowwise():
return FP8RowwiseLinearMethod()
if quant_config.layer_quant_mode.has_fp8_block_scales():
return FP8BlockScalesLinearMethod()
if quant_config.layer_quant_mode.has_nvfp4():
return NVFP4LinearMethod()
if quant_config.layer_quant_mode.has_w4a8_mxfp4_fp8():
return W4A8MXFP4FP8LinearMethod()
if quant_config.layer_quant_mode.is_int4_weight_only_per_group(
) and quant_config.quant_algo == QuantAlgo.W4A16_AWQ:
return W4A16_AWQ_LinearMethod()
raise ValueError(f'unsupported quant mode: {quant_config.quant_mode}')
class Linear(nn.Module):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
mapping: Optional[Mapping] = None,
tensor_parallel_mode: Optional[TensorParallelMode] = None,
gather_output: bool = False, # COLUMN parallel only
quant_config: Optional[QuantConfig] = None,
weights_loading_config: Optional[WeightsLoadingConfig] = None,
reduce_output: bool = True, # ROW parallel only
skip_create_weights_in_init: bool = False,
use_custom_cublas_mm: bool = False,
lora: Optional[LoraLayer] = None,
allreduce_strategy: AllReduceStrategy = AllReduceStrategy.AUTO,
force_dynamic_quantization: bool = False,
):
from ..distributed import AllReduce
super().__init__()
self.has_bias = bias
self.dtype = dtype
self.mapping = mapping or Mapping()
# could be modified later
self.quant_config = quant_config
self.weights_loading_config = weights_loading_config or WeightsLoadingConfig(
)
self.tp_size = self.mapping.tp_size
self.tp_rank = self.mapping.tp_rank
self.tp_mode = tensor_parallel_mode
self.gather_output = gather_output
self.force_dynamic_quantization = force_dynamic_quantization
local_in_features = in_features
local_out_features = out_features
if self.tp_mode == TensorParallelMode.ROW:
assert in_features % self.tp_size == 0, (
f'in_features {in_features} must be divisible by tp_size {self.tp_size}'
)
local_in_features = in_features // self.tp_size
elif self.tp_mode == TensorParallelMode.COLUMN:
assert out_features % self.tp_size == 0, (
f'out_features {out_features} must be divisible by tp_size {self.tp_size}'
)
local_out_features = out_features // self.tp_size
else:
assert self.tp_mode is None, (
'unsupported tensor parallel mode: {self.tp_mode}')
self.in_features = local_in_features
self.out_features = local_out_features
self.all_reduce = AllReduce(
mapping=self.mapping,
strategy=allreduce_strategy) if reduce_output else None
self._weights_created = False
self.reduce_output = reduce_output
self.use_custom_cublas_mm = use_custom_cublas_mm
self.lora = lora
if not skip_create_weights_in_init:
self.create_weights()
def create_weights(self):
if self._weights_created:
return
self.quant_method = get_quant_method(self.quant_config)
self.quant_method.create_weights(self, self.in_features,
self.out_features, self.has_bias,
self.dtype)
self._weights_created = True
@property
def has_any_quant(self):
assert self._weights_created
return self.quant_config is not None and self.quant_config.layer_quant_mode.has_any_quant(
exclude_kv_cache=True)
@property
def has_fp8_qdq(self):
assert self._weights_created
return self.quant_config is not None and self.quant_config.layer_quant_mode.has_fp8_qdq(
)
@property
def has_fp8_rowwise(self):
assert self._weights_created
return self.quant_config is not None and self.quant_config.layer_quant_mode.has_fp8_rowwise(
)
@property
def has_fp8_block_scales(self):
assert self._weights_created
return self.quant_config is not None and self.quant_config.layer_quant_mode.has_fp8_block_scales(
)
@property
def has_nvfp4(self):
assert self._weights_created
return self.quant_config is not None and self.quant_config.layer_quant_mode.has_nvfp4(
)
@property
def has_w4a16_awq(self):
assert self._weights_created
return self.quant_config is not None and self.quant_config.layer_quant_mode.is_int4_weight_only_per_group(
) and self.quant_config.quant_algo == QuantAlgo.W4A16_AWQ
def apply_linear(self,
input,
bias,
lora_params: Optional[dict] | None = None,
layer_idx: Optional[int] | None = None):
output = self.quant_method.apply(self, input, bias)
if self.lora is not None and bool(lora_params):
lora_result = self.lora(input, lora_params, layer_idx)
if lora_result is not None:
output = output + lora_result
return output
def _maybe_fuse_bias_into_allreduce(
self,
bias: Optional[torch.Tensor],
all_reduce_params: Optional[AllReduceParams] = None,
) -> bool:
if self.tp_size > 1:
fuse_bias_into_all_reduce = (
bias is not None and all_reduce_params is not None
and (all_reduce_params.fusion_op
== AllReduceFusionOp.RESIDUAL_RMS_NORM))
if fuse_bias_into_all_reduce:
all_reduce_params.bias = bias
return True
else:
assert all_reduce_params is None or all_reduce_params.enable_allreduce is False, "Cannot fuse norm/residual/bias ops into allreduce op since we do not call allreduce op when tp_size is 1."
return False
def forward(
self,
input: Union[torch.Tensor, Fp4QuantizedTensor],
*,
all_reduce_params: Optional[AllReduceParams] = None,
lora_params: Optional[dict] = None,
layer_idx: Optional[int] = None,
) -> torch.Tensor:
if self.tp_mode == TensorParallelMode.ROW:
bias = None if (self.tp_rank > 0) else self.bias
if self.reduce_output:
fuse_bias = self._maybe_fuse_bias_into_allreduce(
bias, all_reduce_params)
bias = None if fuse_bias else bias
output = self.apply_linear(input, bias, lora_params, layer_idx)
output = self.all_reduce(
output,
all_reduce_params=all_reduce_params,
)
else:
output = self.apply_linear(input, bias, lora_params, layer_idx)
elif self.tp_mode == TensorParallelMode.COLUMN:
output = self.apply_linear(input, self.bias, lora_params, layer_idx)
if self.gather_output:
from ..distributed import allgather
output = allgather(output, self.mapping)
else:
output = self.apply_linear(input, self.bias, lora_params, layer_idx)
return output
def load_weights(self, weights: List[Dict]):
assert self._weights_created
weight_mode = self.weights_loading_config.weight_mode
self.quant_method.load_weights(self, weights, weight_mode)