TensorRT-LLMs/cpp/tensorrt_llm/batch_manager/trtGptModelFactory.h
2025-03-11 21:13:42 +08:00

109 lines
4.8 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/gptJsonConfig.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/rawEngine.h"
#include "tensorrt_llm/runtime/tllmLogger.h"
#include "tensorrt_llm/runtime/worldConfig.h"
#include "trtGptModelInflightBatching.h"
#include "trtGptModelV1.h"
#include <NvInferPlugin.h>
#include <memory>
#include <optional>
namespace tensorrt_llm::batch_manager
{
class TrtGptModelFactory
{
public:
using SizeType32 = tensorrt_llm::runtime::SizeType32;
static std::shared_ptr<TrtGptModel> create(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType,
TrtGptModelOptionalParams const& optionalParams = TrtGptModelOptionalParams())
{
auto const jsonConfig = runtime::GptJsonConfig::parse(trtEnginePath / "config.json");
auto worldConfig = getWorldConfig(jsonConfig, optionalParams.deviceIds);
auto const enginePath = trtEnginePath / jsonConfig.engineFilename(worldConfig);
auto const& modelConfig = jsonConfig.getModelConfig();
return create(runtime::RawEngine(enginePath), modelConfig, worldConfig, modelType, optionalParams);
}
static std::shared_ptr<TrtGptModel> create(std::filesystem::path const& trtEnginePath, TrtGptModelType modelType,
runtime::GptJsonConfig const& jsonConfig, runtime::WorldConfig const& worldConfig,
TrtGptModelOptionalParams const& optionalParams = TrtGptModelOptionalParams())
{
auto const enginePath = trtEnginePath / jsonConfig.engineFilename(worldConfig);
auto const& modelConfig = jsonConfig.getModelConfig();
return create(runtime::RawEngine(enginePath), modelConfig, worldConfig, modelType, optionalParams);
}
static std::shared_ptr<TrtGptModel> create(runtime::RawEngine const& rawEngine,
runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig, TrtGptModelType modelType,
TrtGptModelOptionalParams const& optionalParams = TrtGptModelOptionalParams())
{
auto logger = std::make_shared<runtime::TllmLogger>();
auto const device = worldConfig.getDevice();
auto const rank = worldConfig.getRank();
TLLM_LOG_INFO("Rank %d is using GPU %d", rank, device);
TLLM_CUDA_CHECK(cudaSetDevice(device));
if (modelType == TrtGptModelType::V1)
{
TLLM_LOG_WARNING(
"TrtGptModelType::V1 is deprecated and will be removed in a future release."
" Please use TrtGptModelType::InflightBatching or TrtGptModelType::InflightFusedBatching instead.");
TrtGptModelOptionalParams const& fixedOptionalParams
= TrtGptModelV1::optionalParamsAreValid(modelConfig, optionalParams)
? optionalParams
: TrtGptModelV1::fixOptionalParams(modelConfig, optionalParams);
return std::make_shared<TrtGptModelV1>(logger, modelConfig, worldConfig, rawEngine, fixedOptionalParams);
}
else if ((modelType == TrtGptModelType::InflightBatching)
|| (modelType == TrtGptModelType::InflightFusedBatching))
{
TrtGptModelOptionalParams const& fixedOptionalParams
= TrtGptModelInflightBatching::optionalParamsAreValid(modelConfig, optionalParams)
? optionalParams
: TrtGptModelInflightBatching::fixOptionalParams(modelConfig, optionalParams);
return std::make_shared<TrtGptModelInflightBatching>(logger, modelConfig, worldConfig, rawEngine,
(modelType == TrtGptModelType::InflightFusedBatching), fixedOptionalParams);
}
else
{
throw std::runtime_error("Invalid modelType in trtGptModelFactory");
}
}
private:
static runtime::WorldConfig getWorldConfig(
runtime::GptJsonConfig const& json, std::optional<std::vector<SizeType32>> const& deviceIds)
{
return runtime::WorldConfig::mpi(json.getGpusPerNode(), json.getTensorParallelism(),
json.getPipelineParallelism(), json.getContextParallelism(), deviceIds);
}
};
} // namespace tensorrt_llm::batch_manager