mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update docs * Update windows install version Update gh pages (#2741) update gh pages (#2743) gh pages update (#2746) Update gh-pages (#2764) Update
417 lines
36 KiB
HTML
417 lines
36 KiB
HTML
|
|
|
|
<!DOCTYPE html>
|
|
<html class="writer-html5" lang="en" data-content_root="../">
|
|
<head>
|
|
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
|
|
|
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
|
<title>Useful Runtime Options — tensorrt_llm documentation</title>
|
|
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=b86133f3" />
|
|
<link rel="stylesheet" type="text/css" href="../_static/css/theme.css?v=e59714d7" />
|
|
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
|
|
|
|
|
|
<script src="../_static/jquery.js?v=5d32c60e"></script>
|
|
<script src="../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
|
|
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
|
|
<script src="../_static/doctools.js?v=9bcbadda"></script>
|
|
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
|
|
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
|
|
<script src="../_static/copybutton.js?v=65e89d2a"></script>
|
|
<script src="../_static/js/theme.js"></script>
|
|
<link rel="index" title="Index" href="../genindex.html" />
|
|
<link rel="search" title="Search" href="../search.html" />
|
|
</head>
|
|
|
|
<body class="wy-body-for-nav">
|
|
<div class="wy-grid-for-nav">
|
|
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
|
<div class="wy-side-scroll">
|
|
<div class="wy-side-nav-search" >
|
|
|
|
|
|
|
|
<a href="../index.html" class="icon icon-home">
|
|
tensorrt_llm
|
|
</a>
|
|
<div role="search">
|
|
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
|
|
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
|
|
<input type="hidden" name="check_keywords" value="yes" />
|
|
<input type="hidden" name="area" value="default" />
|
|
</form>
|
|
</div>
|
|
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
|
|
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../key-features.html">Key Features</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../torch.html">PyTorch Backend</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../release-notes.html">Release Notes</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Installation</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/linux.html">Installing on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/windows.html">Installing on Windows</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-windows.html">Building from Source Code on Windows</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">LLM API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">API Introduction</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/index.html">LLM Examples Introduction</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/customization.html">Common Customizations</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/llm_api_examples.html">Examples</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.layers.html">Layers</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.functional.html">Functionals</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.models.html">Models</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">C++ API</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/executor.html">Executor</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/runtime.html">Runtime</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-build.html">trtllm-build</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-serve.html">trtllm-serve</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Architecture</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/overview.html">TensorRT-LLM Architecture</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html">Model Definition</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#compilation">Compilation</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#runtime">Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#multi-gpu-and-multi-node-support">Multi-GPU and Multi-Node Support</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../architecture/add-model.html">Adding a Model</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Advanced</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/executor.html">Executor API</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html">Inference Request</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html#responses">Responses</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/speculative-decoding.html">Speculative Sampling</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Performance</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="perf-overview.html">Overview</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="perf-benchmarking.html">Benchmarking</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="introduction.html">Best Practices</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="perf-analysis.html">Performance Analysis</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Reference</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/troubleshooting.html">Troubleshooting</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/support-matrix.html">Support Matrix</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/precision.html">Numerical Precision</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
|
|
</ul>
|
|
<p class="caption" role="heading"><span class="caption-text">Blogs</span></p>
|
|
<ul>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
|
|
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
|
|
</ul>
|
|
|
|
</div>
|
|
</div>
|
|
</nav>
|
|
|
|
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
|
|
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
|
<a href="../index.html">tensorrt_llm</a>
|
|
</nav>
|
|
|
|
<div class="wy-nav-content">
|
|
<div class="rst-content">
|
|
<div role="navigation" aria-label="Page navigation">
|
|
<ul class="wy-breadcrumbs">
|
|
<li><a href="../index.html" class="icon icon-home" aria-label="Home"></a></li>
|
|
<li class="breadcrumb-item active">Useful Runtime Options</li>
|
|
<li class="wy-breadcrumbs-aside">
|
|
<a href="../_sources/performance/useful-runtime-flags.md.txt" rel="nofollow"> View page source</a>
|
|
</li>
|
|
</ul>
|
|
<hr/>
|
|
</div>
|
|
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
|
<div itemprop="articleBody">
|
|
|
|
<section id="useful-runtime-options">
|
|
<span id="useful-runtime-flags"></span><h1>Useful Runtime Options<a class="headerlink" href="#useful-runtime-options" title="Link to this heading"></a></h1>
|
|
<p>This part summarizes the runtime configuration knobs that can be tweaked to
|
|
enhance the performance of already built engines. As compared to previous examples where
|
|
the LLM-API was used to build and save an engine but not to process any requests,
|
|
runtime knobs would be specified when you are using the LLM-API to actually run inference
|
|
like in the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a></p>
|
|
<section id="capacity-scheduler-policy">
|
|
<h2>Capacity Scheduler Policy<a class="headerlink" href="#capacity-scheduler-policy" title="Link to this heading"></a></h2>
|
|
<p>TensorRT-LLM currently supports three batch scheduler policies: <code class="docutils literal notranslate"><span class="pre">GUARANTEED_NO_EVICT</span></code> (default),
|
|
<code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code> and <code class="docutils literal notranslate"><span class="pre">STATIC_BATCH</span></code>.</p>
|
|
<p>The scheduling policy can be set to <code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code> to pack as many
|
|
requests as possible at each iteration of the forward loop, when in-flight
|
|
sequence batching is enabled. It maximizes the utilization of the GPUs by
|
|
aggressively scheduling requests at the risk of having to pause requests if the
|
|
KV cache size limit is reached.</p>
|
|
<p>For a more conservative approach with respect to the KV cache limitations in
|
|
terms of memory allocation, <code class="docutils literal notranslate"><span class="pre">CapacitySchedulerPolicy</span></code> should be set to
|
|
<code class="docutils literal notranslate"><span class="pre">GUARANTEED_NO_EVICT</span></code> to guarantee that a started request is never paused.</p>
|
|
<p>If the goal is to maximizes the throughput, users should try <code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code>.
|
|
However, they need to keep in mind that it may have a negative impact on
|
|
latency if requests have to be paused.</p>
|
|
<p><code class="docutils literal notranslate"><span class="pre">STATIC_BATCH</span></code> is a legacy mode and is not recommended for production usage.</p>
|
|
<p>To switch the capacity scheduler policy from the default of <code class="docutils literal notranslate"><span class="pre">GUARANTEED_NO_EVICT</span></code> to <code class="docutils literal notranslate"><span class="pre">MAX_UTILIZATION</span></code>
|
|
you would modify the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a> to be:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
|
|
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">SchedulerConfig</span><span class="p">,</span> <span class="n">CapacitySchedulerPolicy</span>
|
|
|
|
|
|
<span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
|
|
<span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
|
|
<span class="s2">"Hello, I am"</span><span class="p">,</span>
|
|
<span class="s2">"The president of the United States is"</span><span class="p">,</span>
|
|
<span class="s2">"The capital of France is"</span><span class="p">,</span>
|
|
<span class="s2">"The future of AI is"</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
|
|
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">scheduler_config</span> <span class="o">=</span> <span class="n">SchedulerConfig</span><span class="p">(</span>
|
|
<span class="n">capacity_scheduler_policy</span><span class="o">=</span><span class="n">CapacitySchedulerPolicy</span><span class="o">.</span><span class="n">MAX_UTILIZATION</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
|
<span class="n">model</span><span class="o">=</span><span class="s2">"meta-llama/Llama-3.3-70B-Instruct"</span><span class="p">,</span>
|
|
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
|
|
<span class="n">scheduler_config</span><span class="o">=</span><span class="n">scheduler_config</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Print the outputs.</span>
|
|
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
|
|
<span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
|
|
<span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">"</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="n">main</span><span class="p">()</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="context-chunking-policy">
|
|
<h2>Context Chunking Policy<a class="headerlink" href="#context-chunking-policy" title="Link to this heading"></a></h2>
|
|
<p>As discussed <a class="reference internal" href="tuning-max-batch-size-and-max-num-tokens.html#revisiting-paged-context-attention-and-context-chunking"><span class="std std-ref">previously</span></a> context chunking will increase the chance of batch processing between
|
|
the context and the generation phase, thereby balancing the calculation amount
|
|
of each iteration and typically increasing throughput.</p>
|
|
<p>TensorRT-LLM currently supports two context chunking policies: <code class="docutils literal notranslate"><span class="pre">FIRST_COME_FIRST_SERVED</span></code> (default) which would prioritize scheduling all the context chunks of a request that comes in first,
|
|
and <code class="docutils literal notranslate"><span class="pre">EQUAL_PROGRESS</span></code> which schedules context chunks from all requests before scheduling the next chunk of any request.</p>
|
|
<p><code class="docutils literal notranslate"><span class="pre">FIRST_COME_FIRST_SERVED</span></code> should achieve overall better performance, while
|
|
<code class="docutils literal notranslate"><span class="pre">EQUAL_PROGRESS</span></code> can be helpful in theory to make sure time to first token (TTFT)
|
|
for most requests are relatively similar.</p>
|
|
<p>To switch the context chunking policy from the default of <code class="docutils literal notranslate"><span class="pre">FIRST_COME_FIRST_SERVED</span></code> to <code class="docutils literal notranslate"><span class="pre">EQUAL_PROGRESS</span></code>
|
|
you would modify the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a> to be:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
|
|
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">SchedulerConfig</span><span class="p">,</span> <span class="n">ContextChunkingPolicy</span>
|
|
|
|
|
|
<span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
|
|
<span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
|
|
<span class="s2">"Hello, I am"</span><span class="p">,</span>
|
|
<span class="s2">"The president of the United States is"</span><span class="p">,</span>
|
|
<span class="s2">"The capital of France is"</span><span class="p">,</span>
|
|
<span class="s2">"The future of AI is"</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
|
|
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">scheduler_config</span> <span class="o">=</span> <span class="n">SchedulerConfig</span><span class="p">(</span>
|
|
<span class="n">context_chunking_policy</span><span class="o">=</span><span class="n">ContextChunkingPolicy</span><span class="o">.</span><span class="n">EQUAL_PROGRESS</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
|
<span class="n">model</span><span class="o">=</span><span class="s2">"meta-llama/Llama-3.3-70B-Instruct"</span><span class="p">,</span>
|
|
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
|
|
<span class="n">scheduler_config</span><span class="o">=</span><span class="n">scheduler_config</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Print the outputs.</span>
|
|
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
|
|
<span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
|
|
<span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">"</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="n">main</span><span class="p">()</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction">
|
|
<h2>Max Tokens in Paged KV Cache and KV Cache Free GPU Memory Fraction<a class="headerlink" href="#max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction" title="Link to this heading"></a></h2>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> and <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code>
|
|
parameters can be used to control the maximum number of tokens handled by the
|
|
KV cache manager. Setting them properly helps better control the amount of
|
|
available memory for the KV cache manager during inference. Keeping in mind
|
|
that increasing the amount of memory available to the KV cache manager tends to
|
|
translate to a higher achievable throughput.</p>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> flag directly sets the maximum number of
|
|
tokens in the KV cache manager. When left unset, that value will be computed
|
|
based on the <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> setting.</p>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> is a floating-point number between <code class="docutils literal notranslate"><span class="pre">0.0</span></code>
|
|
and <code class="docutils literal notranslate"><span class="pre">1.0</span></code> that indicates the maximum fraction of GPU memory (after loading the
|
|
model) that will be used for the KV cache. The default value is <code class="docutils literal notranslate"><span class="pre">0.90</span></code> and
|
|
means that 90% of the free GPU memory will be used to save tokens in the KV
|
|
cache. Based on that value, TensorRT-LLM can determine the maximum number of
|
|
tokens in the KV cache manager.</p>
|
|
<p>When both parameters are set, the maximum number of tokens in the KV cache
|
|
manager will be set to the smaller value between <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code>
|
|
and the value computed from the amount of memory available for the KV cache.</p>
|
|
<p>Unless users clearly know the maximum number of tokens in the KV cache needed
|
|
by the model, it is recommended to leave <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> unset.
|
|
For <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code>, if no other programs are executed on the
|
|
same GPU, it is recommended to test with a as high value as <code class="docutils literal notranslate"><span class="pre">0.95</span></code> to target a
|
|
high throughput. Note that the <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> parameter
|
|
cannot be set to <code class="docutils literal notranslate"><span class="pre">1.0</span></code> because some amount of memory has to be reserved for
|
|
inputs and outputs.</p>
|
|
<p>To set <code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code> you would modify the <a class="reference internal" href="benchmarking-default-performance.html#before-you-begin-tensorrt-llm-llm-api"><span class="std std-ref">LLM-API end-to-end example</span></a> to be:</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm</span><span class="w"> </span><span class="kn">import</span> <span class="n">LLM</span><span class="p">,</span> <span class="n">SamplingParams</span>
|
|
<span class="kn">from</span><span class="w"> </span><span class="nn">tensorrt_llm.bindings.executor</span><span class="w"> </span><span class="kn">import</span> <span class="n">KvCacheConfig</span>
|
|
|
|
|
|
<span class="k">def</span><span class="w"> </span><span class="nf">main</span><span class="p">():</span>
|
|
<span class="n">prompts</span> <span class="o">=</span> <span class="p">[</span>
|
|
<span class="s2">"Hello, I am"</span><span class="p">,</span>
|
|
<span class="s2">"The president of the United States is"</span><span class="p">,</span>
|
|
<span class="s2">"The capital of France is"</span><span class="p">,</span>
|
|
<span class="s2">"The future of AI is"</span><span class="p">,</span>
|
|
<span class="p">]</span>
|
|
|
|
<span class="n">sampling_params</span> <span class="o">=</span> <span class="n">SamplingParams</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="mf">0.8</span><span class="p">,</span> <span class="n">top_p</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">KvCacheConfig</span><span class="p">(</span><span class="n">free_gpu_memory_fraction</span><span class="o">=</span><span class="mf">0.95</span><span class="p">)</span>
|
|
|
|
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span>
|
|
<span class="n">model</span><span class="o">=</span><span class="s2">"meta-llama/Llama-3.3-70B-Instruct"</span><span class="p">,</span>
|
|
<span class="n">tensor_parallel_size</span><span class="o">=</span><span class="mi">8</span><span class="p">,</span>
|
|
<span class="n">kv_cache_config</span><span class="o">=</span><span class="n">kv_cache_config</span>
|
|
<span class="p">)</span>
|
|
|
|
<span class="n">outputs</span> <span class="o">=</span> <span class="n">llm</span><span class="o">.</span><span class="n">generate</span><span class="p">(</span><span class="n">prompts</span><span class="p">,</span> <span class="n">sampling_params</span><span class="p">)</span>
|
|
|
|
<span class="c1"># Print the outputs.</span>
|
|
<span class="k">for</span> <span class="n">output</span> <span class="ow">in</span> <span class="n">outputs</span><span class="p">:</span>
|
|
<span class="n">prompt</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">prompt</span>
|
|
<span class="n">generated_text</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">outputs</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">text</span>
|
|
<span class="nb">print</span><span class="p">(</span><span class="sa">f</span><span class="s2">"Prompt: </span><span class="si">{</span><span class="n">prompt</span><span class="si">!r}</span><span class="s2">, Generated text: </span><span class="si">{</span><span class="n">generated_text</span><span class="si">!r}</span><span class="s2">"</span><span class="p">)</span>
|
|
|
|
<span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
|
<span class="n">main</span><span class="p">()</span>
|
|
</pre></div>
|
|
</div>
|
|
<p>If you wanted to set <code class="docutils literal notranslate"><span class="pre">max_tokens_in_paged_kv_cache</span></code> instead, you would replace <code class="docutils literal notranslate"><span class="pre">free_gpu_memory_fraction</span></code> with <code class="docutils literal notranslate"><span class="pre">max_tokens</span></code> and specify the number.</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">KvCacheConfig</span><span class="p">(</span><span class="n">max_tokens</span><span class="o">=<</span><span class="n">number</span> <span class="n">of</span> <span class="n">tokens</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
<section id="maximum-attention-window-size">
|
|
<h2>Maximum Attention Window Size<a class="headerlink" href="#maximum-attention-window-size" title="Link to this heading"></a></h2>
|
|
<p>The <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> flag sets the maximum number of tokens that are
|
|
attended to in order to generate one token when using techniques like sliding window
|
|
attention. See this
|
|
<a class="reference internal" href="../advanced/gpt-attention.html#sliding-window-attention-cyclic-rolling-buffer-kv-cache"><span class="std std-ref">Document</span></a>
|
|
for more details. It defaults to the maximum sequence length
|
|
(<code class="docutils literal notranslate"><span class="pre">max_seq_len</span></code> when building the engine), which means
|
|
that the feature is disabled by default.</p>
|
|
<p>When set to a smaller value than <code class="docutils literal notranslate"><span class="pre">max_seq_len</span></code> (during
|
|
engine build), only the KV cache of the last <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> tokens
|
|
will be stored. If the input sequence length at runtime exceeds the
|
|
<code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> value, the accuracy may start dropping, but the
|
|
runtime performance will be better (due to the reduction in terms of
|
|
computations and GPU memory allocation). Users can modify that value to
|
|
increase runtime performance at the expense of reduced accuracy.</p>
|
|
<p>Just like <a class="reference internal" href="#max-tokens-in-paged-kv-cache-and-kv-cache-free-gpu-memory-fraction"><span class="std std-ref"><code class="docutils literal notranslate"><span class="pre">kv_cache_free_gpu_mem_fraction</span></code></span></a>, <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> can be specified in the LLM-API
|
|
via <code class="docutils literal notranslate"><span class="pre">KVCacheConfig</span></code>. To specify <code class="docutils literal notranslate"><span class="pre">max_attention_window_size</span></code> you would instantiate <code class="docutils literal notranslate"><span class="pre">KVCacheConfig</span></code> like so</p>
|
|
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span> <span class="n">kv_cache_config</span> <span class="o">=</span> <span class="n">KvCacheConfig</span><span class="p">(</span><span class="n">max_attention_window</span><span class="o">=<</span><span class="n">number</span> <span class="n">of</span> <span class="n">tokens</span><span class="o">></span><span class="p">)</span>
|
|
</pre></div>
|
|
</div>
|
|
</section>
|
|
</section>
|
|
|
|
|
|
</div>
|
|
</div>
|
|
<footer>
|
|
|
|
<hr/>
|
|
|
|
<div role="contentinfo">
|
|
<jinja2.runtime.BlockReference object at 0x7f6400533620>
|
|
|
|
<div class="footer">
|
|
<p>
|
|
Copyright © 2024 NVIDIA Corporation
|
|
</p>
|
|
<p>
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Privacy Policy</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Manage My Privacy</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/preferences/start/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Do Not Sell or Share My Data</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/" target="_blank"
|
|
rel="noopener" data-cms-ai="0">Terms of Service</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Accessibility</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/" target="_blank"
|
|
rel="noopener" data-cms-ai="0">Corporate Policies</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/product-security/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Product Security</a> |
|
|
<a class="Link" href="https://www.nvidia.com/en-us/contact/" target="_blank" rel="noopener"
|
|
data-cms-ai="0">Contact</a>
|
|
</p>
|
|
</div>
|
|
|
|
|
|
</div>
|
|
|
|
|
|
|
|
</footer>
|
|
</div>
|
|
</div>
|
|
</section>
|
|
</div>
|
|
<script>
|
|
jQuery(function () {
|
|
SphinxRtdTheme.Navigation.enable(true);
|
|
});
|
|
</script>
|
|
|
|
</body>
|
|
</html> |