TensorRT-LLMs/torch/arch_overview.html
Iman Tabrizian 130807da9f Update docs (#2732)
* Update docs

* Update windows install version

Update gh pages (#2741)

update gh pages (#2743)

gh pages update (#2746)

Update gh-pages (#2764)

Update
2025-02-11 02:56:32 +00:00

287 lines
20 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html class="writer-html5" lang="en" data-content_root="../">
<head>
<meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Architecture Ovewiew &mdash; tensorrt_llm documentation</title>
<link rel="stylesheet" type="text/css" href="../_static/pygments.css?v=80d5e7a1" />
<link rel="stylesheet" type="text/css" href="../_static/css/theme.css?v=e59714d7" />
<link rel="stylesheet" type="text/css" href="../_static/copybutton.css?v=76b2166b" />
<script src="../_static/jquery.js?v=5d32c60e"></script>
<script src="../_static/_sphinx_javascript_frameworks_compat.js?v=2cd50e6c"></script>
<script src="../_static/documentation_options.js?v=5929fcd5"></script>
<script src="../_static/doctools.js?v=9a2dae69"></script>
<script src="../_static/sphinx_highlight.js?v=dc90522c"></script>
<script src="../_static/clipboard.min.js?v=a7894cd8"></script>
<script src="../_static/copybutton.js?v=65e89d2a"></script>
<script src="../_static/js/theme.js"></script>
<link rel="index" title="Index" href="../genindex.html" />
<link rel="search" title="Search" href="../search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="../index.html" class="icon icon-home">
tensorrt_llm
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
<input type="text" name="q" placeholder="Search docs" aria-label="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div><div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="Navigation menu">
<p class="caption" role="heading"><span class="caption-text">Getting Started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick-start-guide.html">Quick Start Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../key-features.html">Key Features</a></li>
<li class="toctree-l1"><a class="reference internal" href="../torch.html">PyTorch Backend</a></li>
<li class="toctree-l1"><a class="reference internal" href="../release-notes.html">Release Notes</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Installation</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../installation/linux.html">Installing on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-linux.html">Building from Source Code on Linux</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/windows.html">Installing on Windows</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/build-from-source-windows.html">Building from Source Code on Windows</a></li>
<li class="toctree-l1"><a class="reference internal" href="../installation/grace-hopper.html">Installing on Grace Hopper</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">LLM API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/index.html">API Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api/reference.html">API Reference</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">LLM API Examples</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/index.html">LLM Examples Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/customization.html">Common Customizations</a></li>
<li class="toctree-l1"><a class="reference internal" href="../llm-api-examples/llm_api_examples.html">Examples</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Model Definition API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.layers.html">Layers</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.functional.html">Functionals</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.models.html">Models</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.plugin.html">Plugin</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.quantization.html">Quantization</a></li>
<li class="toctree-l1"><a class="reference internal" href="../python-api/tensorrt_llm.runtime.html">Runtime</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">C++ API</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/executor.html">Executor</a></li>
<li class="toctree-l1"><a class="reference internal" href="../_cpp_gen/runtime.html">Runtime</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Command-Line Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-build.html">trtllm-build</a></li>
<li class="toctree-l1"><a class="reference internal" href="../commands/trtllm-serve.html">trtllm-serve</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Architecture</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../architecture/overview.html">TensorRT-LLM Architecture</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html">Model Definition</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#compilation">Compilation</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#runtime">Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/core-concepts.html#multi-gpu-and-multi-node-support">Multi-GPU and Multi-Node Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/checkpoint.html">TensorRT-LLM Checkpoint</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/workflow.html">TensorRT-LLM Build Workflow</a></li>
<li class="toctree-l1"><a class="reference internal" href="../architecture/add-model.html">Adding a Model</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Advanced</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-attention.html">Multi-Head, Multi-Query, and Group-Query Attention</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/gpt-runtime.html">C++ GPT Runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/executor.html">Executor API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/graph-rewriting.html">Graph Rewriting Module</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html">Inference Request</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/inference-request.html#responses">Responses</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/lora.html">Run gpt-2b + LoRA using GptManager / cpp runtime</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/expert-parallelism.html">Expert Parallelism in TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/kv-cache-reuse.html">KV cache reuse</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/speculative-decoding.html">Speculative Sampling</a></li>
<li class="toctree-l1"><a class="reference internal" href="../advanced/disaggregated-service.html">Disaggregated-Service (experimental)</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Performance</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-overview.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-benchmarking.html">Benchmarking</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/performance-tuning-guide/index.html">Performance Tuning Guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="../performance/perf-analysis.html">Performance Analysis</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../reference/troubleshooting.html">Troubleshooting</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/support-matrix.html">Support Matrix</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/precision.html">Numerical Precision</a></li>
<li class="toctree-l1"><a class="reference internal" href="../reference/memory.html">Memory Usage of TensorRT-LLM</a></li>
</ul>
<p class="caption" role="heading"><span class="caption-text">Blogs</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H100vsA100.html">H100 has 4.6x A100 Performance in TensorRT-LLM, achieving 10,000 tok/s at 100ms to first token</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/H200launch.html">H200 achieves nearly 12,000 tokens/sec on Llama2-13B with TensorRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/Falcon180B-H200.html">Falcon-180B on a single H200 GPU with INT4 AWQ, and 6.7x faster Llama-70B over A100</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/quantization-in-TRT-LLM.html">Speed up inference with SOTA quantization techniques in TRT-LLM</a></li>
<li class="toctree-l1"><a class="reference internal" href="../blogs/XQA-kernel.html">New XQA-kernel provides 2.4x more Llama-70B throughput within the same latency budget</a></li>
</ul>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap"><nav class="wy-nav-top" aria-label="Mobile navigation menu" >
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="../index.html">tensorrt_llm</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="Page navigation">
<ul class="wy-breadcrumbs">
<li><a href="../index.html" class="icon icon-home" aria-label="Home"></a></li>
<li class="breadcrumb-item active">Architecture Ovewiew</li>
<li class="wy-breadcrumbs-aside">
<a href="../_sources/torch/arch_overview.md.txt" rel="nofollow"> View page source</a>
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<section id="architecture-ovewiew">
<h1>Architecture Ovewiew<a class="headerlink" href="#architecture-ovewiew" title="Link to this heading"></a></h1>
<p>TensorRT-LLM is a toolkit designed to create optimized solutions for Large Language Model (LLM) inference.
Besides TensorRT, PyTorch can also serve as the backend for TensorRT-LLM. This document provides an overview of the PyTorch Backend architecture.</p>
<section id="top-level-api">
<h2>Top Level API<a class="headerlink" href="#top-level-api" title="Link to this heading"></a></h2>
<p>The interface for PyTorch backend is <code class="docutils literal notranslate"><span class="pre">tensorrt._torch.LLM</span></code>.</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">tensorrt_llm._torch</span> <span class="kn">import</span> <span class="n">LLM</span>
<span class="n">llm</span> <span class="o">=</span> <span class="n">LLM</span><span class="p">(</span><span class="n">model</span><span class="o">=&lt;</span><span class="n">path_to_llama_from_hf</span><span class="o">&gt;</span><span class="p">)</span>
</pre></div>
</div>
<p>The <code class="docutils literal notranslate"><span class="pre">LLM</span></code> also manages the tokenization and detokenization processes of the input.</p>
</section>
<section id="pyexecutor">
<h2>PyExecutor<a class="headerlink" href="#pyexecutor" title="Link to this heading"></a></h2>
<p>Similar to the TensorRT backend, which uses <a class="reference internal" href="../advanced/executor.html"><span class="std std-doc">Executor API</span></a>, the PyTorch backend employs a <code class="docutils literal notranslate"><span class="pre">PyExecutor</span></code> class.
This class has a similar interface to Executor, allowing it to be integrated into LLM as an alternative backend.
Key components of the <code class="docutils literal notranslate"><span class="pre">PyExecutor</span></code> include:</p>
<ul class="simple">
<li><p>Model Engine: Holds the language model and efficiently supports single-step model forward.</p></li>
<li><p>Decoder: Generates output tokens based on Model Engine outputs. Currently, only greedy search is supported.</p></li>
<li><p>Scheduler: Decides whether to allocate resources (like KV Cache) for a request and whether to run forward for each request at the current step.</p></li>
</ul>
<p>The single-step flow of PyExecutor involves:</p>
<ul class="simple">
<li><p>Fetching new requests from the request queue, if any.</p></li>
<li><p>Scheduling some requests.</p></li>
<li><p>Running model forward for scheduled requests.</p></li>
<li><p>Running the decoder using the model forward outputs for the scheduled requests.</p></li>
<li><p>Adding output tokens for each request and handling finished requests.</p></li>
</ul>
</section>
<section id="model-engine">
<h2>Model Engine<a class="headerlink" href="#model-engine" title="Link to this heading"></a></h2>
<p>The core component of <code class="docutils literal notranslate"><span class="pre">PyExecutor</span></code> is the <code class="docutils literal notranslate"><span class="pre">ModelEngine</span></code>, responsible for executing the models forward pass efficiently on the GPU.
The key method of <code class="docutils literal notranslate"><span class="pre">ModelEngine</span></code> is <code class="docutils literal notranslate"><span class="pre">forward</span></code>, which handles the forward pass computation.
For the PyTorch backend, the derived class is <code class="docutils literal notranslate"><span class="pre">PyTorchModelEngine</span></code>, declared in <a class="reference download internal" download="" href="../_downloads/65d5819e99528658d1ed948c865dec4b/pytorch_model_engine.py"><span class="xref download myst">pytorch_model_engine.py</span></a>.</p>
</section>
<section id="decoder">
<h2>Decoder<a class="headerlink" href="#decoder" title="Link to this heading"></a></h2>
<p>The Decoder generates output tokens based on Model Engine outputs and supports greedy search decoding.</p>
</section>
<section id="scheduler">
<h2>Scheduler<a class="headerlink" href="#scheduler" title="Link to this heading"></a></h2>
<p>The scheduler operates in two steps:</p>
<ol class="arabic simple">
<li><p>CapacityScheduler: Determines if there are enough resources to accommodate a request.</p></li>
<li><p>MicroBatchScheduler: Selects some requests for the model to run forward.</p></li>
</ol>
<p>Both CapacityScheduler and MicroBatchScheduler currently use C++ bindings.
However, since the interfaces are implemented in Python, customization is possible.
The document <a class="reference internal" href="scheduler.html"><span class="std std-doc">scheduler.md</span></a> explains how to implement customized scheduling logic.</p>
</section>
<section id="resourcemanager">
<h2>ResourceManager<a class="headerlink" href="#resourcemanager" title="Link to this heading"></a></h2>
<p><code class="docutils literal notranslate"><span class="pre">ResourceManager</span></code> helps allocate and manage these resources that may be needed to run inference for a single request.
It is a container of objects inherited from <code class="docutils literal notranslate"><span class="pre">BaseResourceManager</span></code>, each managing a specific type of resource.
There are three important interfaces for <code class="docutils literal notranslate"><span class="pre">BaseResourceManager</span></code>:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">prepare_resources</span></code>: Called at each step before model forward in PyExecutor for the current batch.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">update_resources</span></code>: Called at each step finish for the current batch.</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">free_resources</span></code>: Called at each request finish.</p></li>
</ul>
<p>One crucial resource is the KV Cache for transformer models. The <code class="docutils literal notranslate"><span class="pre">BaseResourceManager</span></code> for KV Cache is <code class="docutils literal notranslate"><span class="pre">KVCacheManager</span></code>.</p>
<section id="kvcachemanager">
<h3>KVCacheManager<a class="headerlink" href="#kvcachemanager" title="Link to this heading"></a></h3>
<p>Currently, the KVCacheManager uses C++ binding. However, customization in Python is possible, as its interface is implemented in Python.
The document <a class="reference internal" href="kv_cache_manager.html"><span class="std std-doc">kv_cache_manager.md</span></a> details how to implement a customized KVCacheManager.</p>
</section>
</section>
</section>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<jinja2.runtime.BlockReference object at 0x7fa25bc9a0c0>
<div class="footer">
<p>
Copyright © 2024 NVIDIA Corporation
</p>
<p>
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-policy/" target="_blank" rel="noopener"
data-cms-ai="0">Privacy Policy</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/privacy-center/" target="_blank" rel="noopener"
data-cms-ai="0">Manage My Privacy</a> |
<a class="Link" href="https://www.nvidia.com/en-us/preferences/start/" target="_blank" rel="noopener"
data-cms-ai="0">Do Not Sell or Share My Data</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/terms-of-service/" target="_blank"
rel="noopener" data-cms-ai="0">Terms of Service</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/accessibility/" target="_blank" rel="noopener"
data-cms-ai="0">Accessibility</a> |
<a class="Link" href="https://www.nvidia.com/en-us/about-nvidia/company-policies/" target="_blank"
rel="noopener" data-cms-ai="0">Corporate Policies</a> |
<a class="Link" href="https://www.nvidia.com/en-us/product-security/" target="_blank" rel="noopener"
data-cms-ai="0">Product Security</a> |
<a class="Link" href="https://www.nvidia.com/en-us/contact/" target="_blank" rel="noopener"
data-cms-ai="0">Contact</a>
</p>
</div>
</div>
</footer>
</div>
</div>
</section>
</div>
<script>
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>