mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
82 lines
3.2 KiB
C++
82 lines
3.2 KiB
C++
/*
|
|
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/quantization.h"
|
|
#include <cuda_fp16.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
namespace tensorrt_llm
|
|
{
|
|
|
|
enum class FP4QuantizationSFLayout
|
|
{
|
|
// Block scale factors are stored in swizzled layout for cutlass FP4 kernel. Scale factor
|
|
// blocks are organized in 512-byte blocks in global memory, with each block having 128x4 FP8 values.
|
|
// The SF matrix dimensions are therefore padded - rows to the nearest multiple of 128 and columns to
|
|
// the nearest multiple of 4.
|
|
//
|
|
// The scale factor block rows map to data block rows in an interleaved pattern:
|
|
// For a scale factor row 'i', it maps to data block row: (i % 4) * 32 + (i / 4)
|
|
// Column 'j' in the scale factor block corresponds to scaling the j-th block in the data tensor.
|
|
//
|
|
// Please refer to https://nvbugs/4165523 for more details about the swizzled layout.
|
|
SWIZZLED,
|
|
// Block scale factors are stored in linear layout (row-major). This is used in some trtllm-gen kernels standard.
|
|
LINEAR
|
|
};
|
|
|
|
#define PadUpFn(X, Y) ((X + Y - 1) / (Y) * (Y))
|
|
|
|
// totalCloumn should be in SFMatrix, not activation Matrix, so no sfVecSize needed.
|
|
inline int computeFP4SwizzledLayoutSFSize(int totalRow, int totalColumn)
|
|
{
|
|
int paddedRow = PadUpFn(totalRow, 128);
|
|
int paddedColumn = PadUpFn(totalColumn, 4);
|
|
return paddedRow * paddedColumn;
|
|
}
|
|
|
|
inline int computeFP4LinearLayoutSFSize(int totalRow, int totalColumn)
|
|
{
|
|
return totalRow * totalColumn;
|
|
}
|
|
|
|
namespace kernels
|
|
{
|
|
|
|
template <typename T>
|
|
void invokeQuantization(
|
|
int8_t* dst, T const* src, int64_t const size, float const* scalePtr, cudaStream_t stream = 0, int maxGirdSize = 0);
|
|
|
|
template <typename T, typename QuantT>
|
|
void invokePerTokenQuantization(QuantT* dst, T const* src, int64_t const numRows, int64_t const numCols,
|
|
float const* clampPtr, float* scalePtr, float* sumPtr, tensorrt_llm::common::QuantMode quantMode,
|
|
cudaStream_t stream = 0);
|
|
|
|
template <typename T, int SF_VEC_SIZE = 16>
|
|
void invokeFP4Quantization(int m, int n, T const* input, float const* globalScale, int64_t* output, int32_t* SFOuput,
|
|
bool useUE8M0, FP4QuantizationSFLayout layout, int multiProcessorCount, cudaStream_t stream = 0);
|
|
|
|
template <typename T, int SF_VEC_SIZE = 16>
|
|
void invokeBatchedFP4Quantization(int b, int m, int n, T const* input, float const* globalScale, int64_t* output,
|
|
int32_t* SFOuput, bool useUE8M0, int multiProcessorCount, cudaStream_t stream = 0);
|
|
|
|
void invokeNVFP4BlockScaleInterleave(
|
|
int b, int m, int n, uint8_t const* SFIn, uint8_t* SFOutput, int multiProcessorCount, cudaStream_t stream = 0);
|
|
|
|
} // namespace kernels
|
|
} // namespace tensorrt_llm
|