TensorRT-LLMs/examples/cpp/executor/executorExampleDisaggregated.cpp
Kaiyu Xie 2ea17cdad2
Update TensorRT-LLM (#2792)
* Update TensorRT-LLM

---------

Co-authored-by: jlee <jungmoolee@clika.io>
2025-02-18 21:27:39 +08:00

442 lines
18 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cstdint>
#include <filesystem>
#include <fstream>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include "tensorrt_llm/common/assert.h"
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/executor/executor.h"
#include "tensorrt_llm/executor/types.h"
#include "tensorrt_llm/plugins/api/tllmPlugin.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include <cxxopts.hpp>
namespace tle = tensorrt_llm::executor;
namespace fs = std::filesystem;
struct RuntimeOptions
{
std::string trtContextEnginePath;
std::string trtGenerationEnginePath;
std::string inputTokensCsvFile;
std::string outputTokensCsvFile;
bool streaming;
bool excludeInputFromOutput;
int contextRankSize;
int generationRankSize;
tle::SizeType32 maxNewTokens;
tle::SizeType32 beamWidth;
std::optional<tle::SizeType32> numReturnSequences;
tle::SizeType32 timeoutMs;
};
RuntimeOptions parseArgs(int argc, char* argv[]);
// Function that enqueues requests into context executor and generation executor
std::unordered_map<tle::IdType, tle::IdType> enqueueRequests(
RuntimeOptions const& runtimeOpts, tle::Executor& contextExecutor, tle::Executor& generationExecutor);
// Function that waits for gen responses and stores output tokens
std::unordered_map<tle::IdType, tle::BeamTokens> waitForGenResponses(RuntimeOptions const& runtimeOpts,
std::unordered_map<tle::IdType, tle::IdType> const& genRequestIdToContextRequestId,
tle::Executor& generationExecutor);
// Utility function to read input tokens from csv file
std::vector<tle::VecTokens> readInputTokens(std::string const& path);
// Utility function to write output tokens from csv file
void writeOutputTokens(std::string const& path,
std::unordered_map<tle::IdType, tle::IdType>& genRequestIdToContextRequestId,
std::unordered_map<tle::IdType, tle::BeamTokens> const& outputTokens, tle::SizeType32 beamWidth);
int main(int argc, char* argv[])
{
// Register the TRT-LLM plugins
initTrtLlmPlugins();
auto runtimeOpts = parseArgs(argc, argv);
TLLM_CHECK_WITH_INFO(runtimeOpts.beamWidth == 1, "Only support beamWidth =1");
TLLM_CHECK_WITH_INFO(
runtimeOpts.numReturnSequences.has_value() == false || runtimeOpts.numReturnSequences.value() == 1,
"Only support numReturnSequences =1");
// Create the executor for this engine
auto contextExecutorConfig = tle::ExecutorConfig(runtimeOpts.beamWidth);
auto generationExecutorConfig = tle::ExecutorConfig(runtimeOpts.beamWidth);
bool isOrchestrator = (tensorrt_llm::mpi::MpiComm::world().getRank() == 0);
auto orchestratorConfig = tle::OrchestratorConfig(isOrchestrator, "", nullptr, false);
int contextRankSize = runtimeOpts.contextRankSize;
int generationRankSize = runtimeOpts.generationRankSize;
TLLM_CHECK_WITH_INFO(tensorrt_llm::mpi::MpiComm::world().getSize() >= contextRankSize + generationRankSize + 1,
" MPI should launch at least [contextRankSize+generationRankSize+1]: %d processes",
contextRankSize + generationRankSize + 1);
int deviceCount = -1;
TLLM_CHECK(cudaGetDeviceCount(&deviceCount) == cudaSuccess);
std::vector<int32_t> contextRankIds(contextRankSize);
std::vector<int32_t> contextDeviceIds(contextRankSize);
std::vector<int32_t> generationRankIds(generationRankSize);
std::vector<int32_t> generationDeviceIds(generationRankSize);
for (int i = 0; i < contextRankSize; i++)
{
contextRankIds[i] = i + 1;
contextDeviceIds[i] = i % deviceCount;
TLLM_LOG_INFO("context Rank %d on device %d", contextRankIds[i], contextDeviceIds[i]);
}
tle::ParallelConfig contextParallelConfig{tensorrt_llm::executor::CommunicationType::kMPI,
tensorrt_llm::executor::CommunicationMode::kORCHESTRATOR, contextDeviceIds, contextRankIds, orchestratorConfig};
for (int i = 0; i < generationRankSize; i++)
{
generationRankIds[i] = i + 1 + contextRankSize;
generationDeviceIds[i] = (i + contextRankSize) % deviceCount;
TLLM_LOG_INFO("generation Rank %d on device %d", generationRankIds[i], generationDeviceIds[i]);
}
tle::ParallelConfig generationParallelConfig{tensorrt_llm::executor::CommunicationType::kMPI,
tensorrt_llm::executor::CommunicationMode::kORCHESTRATOR, generationDeviceIds, generationRankIds,
orchestratorConfig};
contextExecutorConfig.setParallelConfig(contextParallelConfig);
generationExecutorConfig.setParallelConfig(generationParallelConfig);
auto contextExecutor
= tle::Executor(runtimeOpts.trtContextEnginePath, tle::ModelType::kDECODER_ONLY, contextExecutorConfig);
auto generationExecutor
= tle::Executor(runtimeOpts.trtGenerationEnginePath, tle::ModelType::kDECODER_ONLY, generationExecutorConfig);
tensorrt_llm::mpi::MpiComm::world().barrier();
if (tensorrt_llm::mpi::MpiComm::world().getRank() == 0)
{
TLLM_CHECK_WITH_INFO(contextExecutor.canEnqueueRequests(), "contextExecutor can't enqueue requests");
TLLM_CHECK_WITH_INFO(generationExecutor.canEnqueueRequests(), "generationExecutor can't enqueue requests");
auto genRequestIdsToContextRequestIds = enqueueRequests(runtimeOpts, contextExecutor, generationExecutor);
auto outputTokens = waitForGenResponses(runtimeOpts, genRequestIdsToContextRequestIds, generationExecutor);
TLLM_LOG_INFO("Writing output tokens to %s", runtimeOpts.outputTokensCsvFile.c_str());
writeOutputTokens(
runtimeOpts.outputTokensCsvFile, genRequestIdsToContextRequestIds, outputTokens, runtimeOpts.beamWidth);
}
tensorrt_llm::mpi::MpiComm::world().barrier();
TLLM_LOG_INFO("Exiting.");
return 0;
}
RuntimeOptions parseArgs(int argc, char* argv[])
{
RuntimeOptions runtimeOpts;
cxxopts::Options options(argv[0], "Example that demonstrates how to use the Executor Disaggregated API");
options.add_options()("h,help", "Print usage");
options.add_options()(
"context_engine_dir", "Directory that store the context engine.", cxxopts::value<std::string>());
options.add_options()(
"generation_engine_dir", "Directory that store the generation engine.", cxxopts::value<std::string>());
options.add_options()(
"context_rank_size", "The number of ranks for the context engine", cxxopts::value<int>()->default_value("1"));
options.add_options()("generation_rank_size", "The number of ranks for the generation engine",
cxxopts::value<int>()->default_value("1"));
options.add_options()("beam_width", "The beam width", cxxopts::value<int>()->default_value("1"));
options.add_options()(
"num_return_sequences", "The number of return sequences per request.", cxxopts::value<std::optional<int>>());
options.add_options()("streaming", "Operate in streaming mode", cxxopts::value<bool>()->default_value("false"));
options.add_options()("exclude_input_from_output",
"Exclude input tokens when writing output tokens. Only has effect for streaming = false. For streaming = true, "
"output tokens are not included.",
cxxopts::value<bool>()->default_value("false"));
options.add_options()(
"max_new_tokens", "The maximum number of tokens to generate", cxxopts::value<int>()->default_value("10"));
options.add_options()(
"input_tokens_csv_file", "Path to a csv file that contains input tokens", cxxopts::value<std::string>());
options.add_options()("output_tokens_csv_file", "Path to a csv file that will contain the output tokens",
cxxopts::value<std::string>()->default_value("outputTokens.csv"));
options.add_options()("timeout_ms", "The maximum time to wait for all responses, in milliseconds.",
cxxopts::value<int>()->default_value("10000"));
auto parsedOptions = options.parse(argc, argv);
// Argument: help
if (parsedOptions.count("help"))
{
TLLM_LOG_ERROR(options.help());
exit(0);
}
runtimeOpts.trtContextEnginePath = parsedOptions["context_engine_dir"].as<std::string>();
if (!fs::exists(runtimeOpts.trtContextEnginePath) || !fs::is_directory(runtimeOpts.trtContextEnginePath))
{
TLLM_LOG_ERROR("Context engine directory doesn't exist.");
exit(1);
}
runtimeOpts.trtGenerationEnginePath = parsedOptions["generation_engine_dir"].as<std::string>();
if (!fs::exists(runtimeOpts.trtGenerationEnginePath) || !fs::is_directory(runtimeOpts.trtGenerationEnginePath))
{
TLLM_LOG_ERROR("Generation engine directory doesn't exist.");
exit(1);
}
// Argument: Input tokens csv file
if (!parsedOptions.count("input_tokens_csv_file"))
{
TLLM_LOG_ERROR(options.help());
TLLM_LOG_ERROR("Please specify input_tokens_csv_file");
exit(1);
}
runtimeOpts.inputTokensCsvFile = parsedOptions["input_tokens_csv_file"].as<std::string>();
runtimeOpts.streaming = parsedOptions["streaming"].as<bool>();
runtimeOpts.excludeInputFromOutput = parsedOptions["exclude_input_from_output"].as<bool>();
runtimeOpts.maxNewTokens = parsedOptions["max_new_tokens"].as<int>();
runtimeOpts.beamWidth = parsedOptions["beam_width"].as<int>();
runtimeOpts.contextRankSize = parsedOptions["context_rank_size"].as<int>();
runtimeOpts.generationRankSize = parsedOptions["generation_rank_size"].as<int>();
if (parsedOptions.count("num_return_sequences") > 0)
{
runtimeOpts.numReturnSequences = parsedOptions["num_return_sequences"].as<std::optional<int>>();
}
runtimeOpts.timeoutMs = parsedOptions["timeout_ms"].as<int>();
runtimeOpts.outputTokensCsvFile = parsedOptions["output_tokens_csv_file"].as<std::string>();
return runtimeOpts;
}
std::unordered_map<tle::IdType, tle::IdType> enqueueRequests(
RuntimeOptions const& runtimeOpts, tle::Executor& contextExecutor, tle::Executor& generationExecutor)
{
tle::OutputConfig outputConfig;
outputConfig.excludeInputFromOutput = runtimeOpts.excludeInputFromOutput;
tle::SamplingConfig samplingConfig(runtimeOpts.beamWidth);
std::unordered_map<tle::IdType, tle::IdType> genRequestIdToContextRequestId;
if (runtimeOpts.numReturnSequences && runtimeOpts.beamWidth == 1)
{
samplingConfig.setTopP(0.9);
}
samplingConfig.setNumReturnSequences(runtimeOpts.numReturnSequences);
TLLM_LOG_INFO("Reading input tokens from %s", runtimeOpts.inputTokensCsvFile.c_str());
auto inputTokens = readInputTokens(runtimeOpts.inputTokensCsvFile);
TLLM_LOG_INFO("Number of requests: %d", inputTokens.size());
std::vector<tle::Request> requests;
for (auto& tokens : inputTokens)
{
TLLM_LOG_INFO("Creating request with %d input tokens", tokens.size());
requests.emplace_back(
std::move(tokens), runtimeOpts.maxNewTokens, runtimeOpts.streaming, samplingConfig, outputConfig);
requests.back().setRequestType(tensorrt_llm::executor::RequestType::REQUEST_TYPE_CONTEXT_ONLY);
}
auto contextRequestIds = contextExecutor.enqueueRequests(requests);
for (size_t i = 0; i < requests.size(); i++)
{
TLLM_LOG_INFO("waiting response for Context request id: %lu,", contextRequestIds[i]);
auto response = contextExecutor.awaitResponses(contextRequestIds[i]);
TLLM_LOG_INFO("response received for Context request id: %lu", contextRequestIds[i]);
TLLM_CHECK(response.size() == 1);
TLLM_CHECK(response.back().getResult().contextPhaseParams.has_value());
requests.at(i).setContextPhaseParams(response.back().getResult().contextPhaseParams.value());
requests.at(i).setRequestType(tensorrt_llm::executor::RequestType::REQUEST_TYPE_GENERATION_ONLY);
auto genRequestId = generationExecutor.enqueueRequest(requests.at(i));
genRequestIdToContextRequestId[genRequestId] = contextRequestIds[i];
TLLM_LOG_INFO("enqueuing generation request for Context request id: %lu, generation request id: %lu",
contextRequestIds[i], genRequestId);
}
return genRequestIdToContextRequestId;
}
std::unordered_map<tle::IdType, tle::BeamTokens> waitForGenResponses(RuntimeOptions const& runtimeOpts,
std::unordered_map<tle::IdType, tle::IdType> const& genRequestIdToContextRequestId,
tle::Executor& generationExecutor)
{
// Map that will be used to store output tokens for requests
std::unordered_map<tle::IdType, tle::BeamTokens> outputTokens;
std::vector<tle::IdType> contextRequestIds{};
std::vector<tle::IdType> genRequestIds{};
for (auto const& [key, value] : genRequestIdToContextRequestId)
{
genRequestIds.push_back(key);
contextRequestIds.push_back(value);
}
for (auto contextRequestId : contextRequestIds)
{
outputTokens[contextRequestId] = tle::BeamTokens(runtimeOpts.beamWidth);
}
tle::SizeType32 numFinished{0};
tle::SizeType32 iter{0};
// Get the new tokens for each request
while (numFinished < static_cast<tle::SizeType32>(genRequestIds.size()) && iter < runtimeOpts.timeoutMs)
{
std::chrono::milliseconds waitTime(1);
// Wait for any response
auto responses = generationExecutor.awaitResponses(waitTime);
auto insertResponseTokens = [&outputTokens, &genRequestIdToContextRequestId](tle::IdType genRequestId,
tle::SizeType32 seqIdx, tle::VecTokens const& respTokens)
{
TLLM_LOG_INFO("Got %d tokens for seqIdx %d for genRequestId %d,contextRequestId %d", respTokens.size(),
seqIdx, genRequestId, genRequestIdToContextRequestId.at(genRequestId));
// Store the output tokens for that request id
auto& outTokens = outputTokens.at(genRequestIdToContextRequestId.at(genRequestId)).at(seqIdx);
outTokens.insert(outTokens.end(), std::make_move_iterator(respTokens.begin()),
std::make_move_iterator(respTokens.end()));
};
// Loop over the responses
for (auto const& response : responses)
{
auto genRequestId = response.getRequestId();
if (!response.hasError())
{
auto result = response.getResult();
numFinished += result.isFinal;
if (runtimeOpts.beamWidth > 1)
{
for (tle::SizeType32 beam = 0; beam < runtimeOpts.beamWidth; ++beam)
{
insertResponseTokens(genRequestId, beam, result.outputTokenIds.at(beam));
}
}
else
{
insertResponseTokens(genRequestId, result.sequenceIndex, result.outputTokenIds.at(0));
}
if (result.isFinal)
{
TLLM_LOG_INFO("genRequest id %lu ,contextRequestId %lu is completed.", genRequestId,
genRequestIdToContextRequestId.at(genRequestId));
}
}
else
{
// Allow response with error only if awaitResponse processed a terminated request id
std::string err = "genReqId " + std::to_string(response.getRequestId())
+ " has already been processed and was terminated.";
if (response.getErrorMsg() != err)
{
TLLM_THROW("GenRequest id %lu encountered error: %s", genRequestId, response.getErrorMsg().c_str());
}
}
}
++iter;
}
if (iter == runtimeOpts.timeoutMs)
{
TLLM_THROW("Timeout exceeded.");
}
return outputTokens;
}
std::vector<tle::VecTokens> readInputTokens(std::string const& path)
{
std::vector<tle::VecTokens> data;
std::ifstream file(path);
if (!file.is_open())
{
auto const err = std::string{"Failed to open file: "} + path;
TLLM_LOG_ERROR(err);
TLLM_THROW(err);
}
std::string line;
while (std::getline(file, line))
{
std::vector<tle::TokenIdType> row;
std::stringstream ss(line);
std::string token;
while (std::getline(ss, token, ','))
{
try
{
row.push_back(std::stoi(token));
}
catch (std::invalid_argument const& e)
{
TLLM_LOG_ERROR("Invalid argument: %s", e.what());
}
catch (std::out_of_range const& e)
{
TLLM_LOG_ERROR("Out of range: %s", e.what());
}
}
data.push_back(row);
}
file.close();
return data;
}
void writeOutputTokens(std::string const& path,
std::unordered_map<tle::IdType, tle::IdType>& genRequestIdToContextRequestId,
std::unordered_map<tle::IdType, tle::BeamTokens> const& outputTokens, tle::SizeType32 beamWidth)
{
std::ofstream file(path);
if (!file.is_open())
{
TLLM_LOG_ERROR("Failed to open file %s", path.c_str());
return;
}
std::vector<tle::IdType> requestIds;
for (auto const& [key, value] : genRequestIdToContextRequestId)
{
requestIds.push_back(value);
}
std::sort(requestIds.begin(), requestIds.end());
for (auto requestId : requestIds)
{
auto const& outTokens = outputTokens.at(requestId);
for (tle::SizeType32 beam = 0; beam < beamWidth; ++beam)
{
auto const& beamTokens = outTokens.at(beam);
for (size_t i = 0; i < beamTokens.size(); ++i)
{
file << beamTokens[i];
if (i < beamTokens.size() - 1)
{
file << ", ";
}
}
file << "\n";
}
}
file.close();
}