mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
Co-authored-by: Rong Zhou <130957722+ReginaZh@users.noreply.github.com> Co-authored-by: Onur Galoglu <33498883+ogaloglu@users.noreply.github.com> Co-authored-by: Fabian Joswig <fjosw@users.noreply.github.com>
92 lines
3.1 KiB
C++
92 lines
3.1 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include <string>
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/executor/executor.h"
|
|
#include "tensorrt_llm/plugins/api/tllmPlugin.h"
|
|
|
|
namespace tlc = tensorrt_llm::common;
|
|
namespace tle = tensorrt_llm::executor;
|
|
|
|
int main(int argc, char* argv[])
|
|
{
|
|
// Register the TRT-LLM plugins
|
|
initTrtLlmPlugins();
|
|
|
|
if (argc != 2)
|
|
{
|
|
TLLM_LOG_ERROR("Usage: %s <dir_with_engine_files>", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
int constexpr sentinels[] = {42, 29};
|
|
int step = 0;
|
|
|
|
auto logitsPostProcessorFn
|
|
= [&step, &sentinels](tle::IdType reqId, tle::Tensor& logits, tle::BeamTokens const& tokens,
|
|
tle::StreamPtr const& streamPtr, std::optional<tle::IdType> clientId)
|
|
{
|
|
auto logitsDataType = logits.getDataType();
|
|
auto logitsCpu = tensorrt_llm::executor::Tensor::cpu(logitsDataType, logits.getShape());
|
|
auto* dataPtr = logitsCpu.getData();
|
|
auto* dataPtrFloat = static_cast<float*>(dataPtr);
|
|
for (size_t i = 0; i < logitsCpu.getSize(); ++i)
|
|
{
|
|
dataPtrFloat[i] = -1.0e20;
|
|
}
|
|
dataPtrFloat[sentinels[step]] = 0.0f;
|
|
|
|
logits.setFrom(logitsCpu, streamPtr);
|
|
step = (1 - step);
|
|
};
|
|
|
|
std::string logitsPostProcessorName = "MyLogitsPP";
|
|
|
|
// Create the executor for this engine
|
|
tle::SizeType32 beamWidth = 1;
|
|
auto executorConfig = tle::ExecutorConfig(beamWidth);
|
|
|
|
auto logitsProcConfig = tle::LogitsPostProcessorConfig();
|
|
logitsProcConfig.setProcessorMap(std::unordered_map<std::string, tensorrt_llm::executor::LogitsPostProcessor>{
|
|
{logitsPostProcessorName, logitsPostProcessorFn}});
|
|
executorConfig.setLogitsPostProcessorConfig(logitsProcConfig);
|
|
|
|
auto trtEnginePath = argv[1];
|
|
auto executor = tle::Executor(trtEnginePath, tle::ModelType::kDECODER_ONLY, executorConfig);
|
|
|
|
// Create the request
|
|
tle::SizeType32 maxNewTokens = 5;
|
|
tle::VecTokens inputTokens{1, 2, 3, 4};
|
|
auto request = tle::Request(inputTokens, maxNewTokens);
|
|
request.setLogitsPostProcessorName(logitsPostProcessorName);
|
|
|
|
// Enqueue the request
|
|
auto requestId = executor.enqueueRequest(std::move(request));
|
|
|
|
// Wait for the response
|
|
auto responses = executor.awaitResponses(requestId);
|
|
|
|
// Get outputTokens
|
|
auto outputTokens = responses.at(0).getResult().outputTokenIds.at(beamWidth - 1);
|
|
|
|
TLLM_LOG_INFO("Output tokens: %s", tlc::vec2str(outputTokens).c_str());
|
|
|
|
return 0;
|
|
}
|