TensorRT-LLMs/cpp/tensorrt_llm/kernels/sparseAttentionKernels.cu
Fanrong Li 0d20a8fd61
[TRTLLM-8536][feat] Add the sparse attention framework and one use case--RocketKV support (#8086)
Signed-off-by: Fanrong Li <23290157+lfr-0531@users.noreply.github.com>
Signed-off-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
Co-authored-by: yuhangh <58161490+heyuhhh@users.noreply.github.com>
2025-10-14 08:23:16 -07:00

133 lines
5.6 KiB
Plaintext

/*
* Copyright (c) 2022-2025, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/sparseAttentionKernels.h"
#include <cub/cub.cuh>
namespace tensorrt_llm
{
namespace kernels
{
template <int THREADS_PER_BLOCK>
__global__ void gatherKvPageOffsetsKernel(
int32_t* output_kv_page_offsets, // [num_head_kv, batch_size, 2, max_num_pages_per_seq]
int32_t* output_seq_lengths, // [num_head_kv, batch_size]
int32_t const* kv_page_offsets, // [batch_size, 2, max_num_pages_per_seq]
int32_t const* seq_lengths, // [batch_size]
SparseAttentionParams const sparse_params, int32_t const batch_size, int32_t const tokens_per_page,
int32_t const max_num_pages_per_seq)
{
// Each CUDA block processes one sequence from the batch for one head.
int32_t const head_idx = blockIdx.x;
int32_t const batch_idx = blockIdx.y;
if (batch_idx >= batch_size)
{
return;
}
// Shared memory for reduction.
__shared__ typename cub::BlockReduce<Pair, THREADS_PER_BLOCK>::TempStorage temp_storage;
// Get the range of sparse indices and the sequence length.
int32_t const start_offset = sparse_params.sparse_attn_offsets[batch_idx];
int32_t const end_offset = sparse_params.sparse_attn_offsets[batch_idx + 1];
int32_t const total_pages = sparse_params.sparse_attn_offsets[batch_size];
int32_t const num_sparse_pages = end_offset - start_offset;
int32_t const original_seq_len = seq_lengths[batch_idx];
// Get global sparse index.
int32_t const sparse_idx_global = head_idx * total_pages + start_offset;
// Get the base memory offset. shape: [batch_size, 2, max_num_pages_per_seq]
size_t const src_base_offset = (size_t) batch_idx * 2 * max_num_pages_per_seq;
size_t const dst_base_offset = (size_t) head_idx * batch_size * 2 * max_num_pages_per_seq + src_base_offset;
// Initialize the local max page index and number of valid pages.
int32_t local_max_page_index = -1;
int32_t local_num_valid_pages = 0;
// Perform the gather operation.
for (int32_t i = threadIdx.x; i < num_sparse_pages; i += blockDim.x)
{
// Get the source idx and offset.
int32_t const src_idx = sparse_params.sparse_attn_indices[sparse_idx_global + i];
if (src_idx < 0)
{
continue;
}
// Update the local max page index.
local_max_page_index = max(local_max_page_index, src_idx);
local_num_valid_pages++;
// Get the source and destination offsets.
size_t const src_offset_dim0 = src_base_offset + 0 * max_num_pages_per_seq + src_idx;
size_t const src_offset_dim1 = src_base_offset + 1 * max_num_pages_per_seq + src_idx;
size_t const dst_offset_dim0 = dst_base_offset + 0 * max_num_pages_per_seq + i;
size_t const dst_offset_dim1 = dst_base_offset + 1 * max_num_pages_per_seq + i;
// Perform the gather operation: read from the sparse location and write to the dense location.
output_kv_page_offsets[dst_offset_dim0] = kv_page_offsets[src_offset_dim0];
output_kv_page_offsets[dst_offset_dim1] = kv_page_offsets[src_offset_dim1];
}
// Reduce the local max page indices and number of valid pages.
Pair local_pair = {local_max_page_index, local_num_valid_pages};
Pair result = cub::BlockReduce<Pair, THREADS_PER_BLOCK>(temp_storage).Reduce(local_pair, PairReduceOp());
// Update sequence length for this head and batch.
if (threadIdx.x == 0)
{
int32_t const max_page_index = result.max_val;
int32_t const num_valid_pages = result.sum_val;
int32_t const ori_valid_pages = (original_seq_len + tokens_per_page - 1) / tokens_per_page;
size_t const seq_len_offset = (size_t) head_idx * batch_size + batch_idx;
if (num_valid_pages > 0)
{
int32_t seq_len = original_seq_len - (ori_valid_pages - num_valid_pages) * tokens_per_page;
int32_t seq_len_remain = original_seq_len % tokens_per_page;
if (max_page_index != ori_valid_pages - 1 && seq_len_remain != 0)
{
seq_len += tokens_per_page - seq_len_remain;
}
output_seq_lengths[seq_len_offset] = seq_len;
}
else
{
output_seq_lengths[seq_len_offset] = 0;
}
}
}
// Host-side launcher function
void invokeGatherKvPageOffsets(int32_t* output_kv_page_offsets, int32_t* output_seq_lengths,
int32_t const* kv_page_offsets, int32_t const* seq_lengths, SparseAttentionParams const sparse_params,
int32_t const batch_size, int32_t const num_head_kv, int32_t const tokens_per_page,
int32_t const max_num_pages_per_seq, cudaStream_t stream)
{
// The grid.
dim3 grid(num_head_kv, batch_size, 1);
// The block.
dim3 block(256, 1, 1);
// Shared memory size.
size_t smem_size = sizeof(Pair) * 256;
// Launch the kernel.
gatherKvPageOffsetsKernel<256><<<grid, block, smem_size, stream>>>(output_kv_page_offsets, output_seq_lengths,
kv_page_offsets, seq_lengths, sparse_params, batch_size, tokens_per_page, max_num_pages_per_seq);
}
} // namespace kernels
} // namespace tensorrt_llm