TensorRT-LLMs/tensorrt_llm/llmapi/llm_utils.py
Anish Shanbhag 15de45d782
[TRTLLM-8682][chore] Remove auto_parallel module (#8329)
Signed-off-by: Anish Shanbhag <ashanbhag@nvidia.com>
2025-10-22 20:53:08 -04:00

928 lines
37 KiB
Python

import copy
import json
import os
import shutil
import tempfile
import time
import weakref
from dataclasses import asdict, dataclass, field, is_dataclass
from pathlib import Path
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
import transformers
from pydantic import BaseModel
from tqdm import tqdm
from .._utils import (global_mpi_rank, local_mpi_rank, mpi_barrier,
mpi_broadcast, mpi_rank, release_gc)
# yapf: disable
from ..bindings.executor import (BatchingType, CapacitySchedulerPolicy,
ContextChunkingPolicy, ExecutorConfig,
KvCacheRetentionConfig, SchedulerConfig)
# yapf: enable
from ..builder import BuildConfig, Engine, build
from ..llmapi.llm_args import TrtLlmArgs
from ..logger import logger
from ..mapping import Mapping
from ..models.automodel import MODEL_MAP, AutoConfig, AutoModelForCausalLM
from ..models.modeling_utils import PretrainedConfig, QuantAlgo, QuantConfig
from ..module import Module
from .build_cache import (BuildCache, BuildCacheConfig, CachedStage,
get_build_cache_config_from_env)
from .llm_args import (CalibConfig, CudaGraphConfig, DraftTargetDecodingConfig,
EagleDecodingConfig, KvCacheConfig, LlmArgs,
LookaheadDecodingConfig, MedusaDecodingConfig,
MTPDecodingConfig, NGramDecodingConfig,
UserProvidedDecodingConfig, _ModelFormatKind,
_ModelWrapper, _ParallelConfig,
update_llm_args_with_extra_dict,
update_llm_args_with_extra_options)
from .mpi_session import MPINodeState, MpiSession
from .tokenizer import TransformersTokenizer, load_hf_tokenizer
# TODO[chunweiy]: move the following symbols back to utils scope, and remove the following import
from .utils import (download_hf_model, download_hf_pretrained_config,
enable_llm_debug, get_directory_size_in_gb, logger_debug,
print_colored, print_traceback_on_error)
@dataclass
class _ModelInfo:
dtype: Optional[str] = None
architecture: Optional[str] = None
@property
def model_name(self) -> str:
if self.architecture is None:
raise RuntimeError("The architecture is not set yet.")
return self.architecture
@classmethod
def from_pretrained_config(cls, config: PretrainedConfig):
return cls(dtype=config.dtype, architecture=config.architecture)
@classmethod
def from_builder_config_json(cls, config: dict):
if 'version' in config:
# The Dict format is { 'builder_config':..., 'plugin_config':...}
dtype = config['plugin_config']['gpt_attention_plugin']
else:
dtype = config['pretrained_config']['dtype']
return cls(dtype=dtype, architecture=config['builder_config']['name'])
@classmethod
def from_module(cls, module: Module):
raise NotImplementedError()
@dataclass
class _ModelRuntimeContext:
''' _ModelRuntimeContext holds the minimum runtime resources for running a model.
It could be a runtime cache in MPI nodes.
'''
engine: Optional[Engine] = None
mapping: Optional[Mapping] = None
model_info: Optional[_ModelInfo] = None
# This is only used when build-cache is enabled
engine_path: Optional[str] = None
@property
def model_arch(self) -> str:
# "LlaMACausalForLM" or "OPTForCausalLM" and so on
return self.engine.config.pretrained_config['architecture']
class ModelLoader:
''' The ModelLoader is used to build an end-to-end model for a single-gpu.
It accepts model name or a local model dir, and will download the model if necessary.
'''
def __init__(self,
llm_args: LlmArgs,
workspace: Optional[str | tempfile.TemporaryDirectory] = None,
llm_build_stats: Optional["LlmBuildStats"] = None):
self.llm_args = llm_args
self._workspace = workspace or tempfile.TemporaryDirectory()
self.llm_build_stats = llm_build_stats or LlmBuildStats()
self.model_obj = _ModelWrapper(self.llm_args.model)
self.speculative_model_obj = _ModelWrapper(
self.llm_args.speculative_model_dir
) if self.llm_args.speculative_model_dir is not None else None
if isinstance(self.llm_args, TrtLlmArgs):
self.convert_checkpoint_options = self.llm_args._convert_checkpoint_options
self.rank = mpi_rank()
self.global_rank = global_mpi_rank()
self.mapping = llm_args.parallel_config.to_mapping()
self._build_pipeline = []
# For model from hub, the _model_dir is None, and will updated once downloaded
self._model_dir: Optional[
Path] = self.model_obj.model_dir if self.model_obj.is_local_model else None
self._speculative_model_dir: Optional[
Path] = self.speculative_model_obj.model_dir if self.speculative_model_obj is not None and self.model_obj.is_local_model else None
self._model_info: Optional[_ModelInfo] = None
self._model_format = self.llm_args.model_format
if isinstance(self.llm_args, TrtLlmArgs):
assert self.llm_args.build_config
self.build_config = self.llm_args.build_config
self._gather_build_steps()
def _gather_build_steps(self):
# Prepare the model processing pipeline
if isinstance(self.llm_args.model, Module):
# Build engine from user provided model
self._build_pipeline.append(
("Build TensorRT LLM engine",
self._build_engine_from_inmemory_model))
return
if (self.model_obj.is_hub_model
and self._model_format is not _ModelFormatKind.TLLM_ENGINE) or (
self.speculative_model_obj
and self.speculative_model_obj.is_hub_model):
# Download HF model if necessary
if self.model_obj.model_name is None:
raise ValueError(
"Either model_dir or model should be provided to ModelConfig."
)
self._build_pipeline.append(
("Downloading HF model", self._download_hf_model))
if self._model_format is _ModelFormatKind.HF:
# HF -> TRT checkpoints -> engine
self._build_pipeline.append(
("Loading HF model to memory", self._load_model_from_hf))
self._build_pipeline.append(
("Building TRT-LLM engine", self._build_engine))
elif self._model_format is _ModelFormatKind.TLLM_CKPT:
# TRT checkpoints -> engine
self._build_pipeline.append(("Loading TRT checkpoints to memory",
self._load_model_from_ckpt))
self._build_pipeline.append(
("Build TRT-LLM engine", self._build_engine))
elif self._model_format is _ModelFormatKind.TLLM_ENGINE:
# Nothing need to do
pass
else:
raise ValueError(f"Unknown model format {self._model_format}")
class BuildPipeline:
def __init__(self, enable_tqdm: bool, labels: List[str],
step_handlers: List[Callable],
llm_build_stats: "LlmBuildStats"):
assert len(labels) == len(step_handlers)
self.labels = labels
self.step_handlers = step_handlers
self.llm_build_stats = llm_build_stats
self.to_log = mpi_rank() == 0
self.counter = 0
self.progress_bar = tqdm(
total=len(labels)) if enable_tqdm and self.to_log else None
def __call__(self):
start_time = time.time()
for i in range(len(self.labels)):
self.step_forward()
if self.to_log:
if self.progress_bar:
self.progress_bar.close()
else:
overall_latency = time.time() - start_time
print_colored("Loading model done.\n", 'bold_green')
print_colored(
'Total latency: {:.3f}s\n'.format(overall_latency),
'grey')
def step_forward(self):
n_steps = len(self.labels)
label = self.labels[self.counter]
# display step information
if self.to_log:
if self.progress_bar:
self.progress_bar.set_description(self.labels[self.counter])
else:
print_colored("Loading Model: ")
print_colored(f"[{self.counter+1}/{n_steps}]\t",
'bold_green')
print_colored(f"{label}\n")
# execute the step
start_time = time.time()
self.step_handlers[self.counter]()
# release resource after each step
release_gc()
if self.progress_bar:
self.progress_bar.update(1)
latency = time.time() - start_time
if self.to_log and not self.progress_bar:
print_colored("Time: {:.3f}s\n".format(latency), 'grey')
self.llm_build_stats.build_steps_info.append((label, latency))
self.counter += 1
def __call__(self, engine_dir: Optional[Path] = None) -> Path:
'''
The engine_dir is the path to save the built engine.
'''
if self.llm_args.model_format is _ModelFormatKind.TLLM_ENGINE:
return self.model_obj.model_dir
if self.llm_args.parallel_config.is_multi_gpu:
torch.cuda.set_device(self.global_rank % self.mapping.gpus_per_node)
pipeline = ModelLoader.BuildPipeline(
self.llm_args.enable_tqdm,
[label for label, _ in self._build_pipeline],
[handler for _, handler in self._build_pipeline],
llm_build_stats=self.llm_build_stats,
)
pipeline()
assert engine_dir
runtime_context = _ModelRuntimeContext(
engine=self._engine,
mapping=self.mapping,
model_info=self._model_info,
)
self.save(runtime_context, self.model_obj.model_dir, engine_dir)
return engine_dir
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
for attr_name in dir(self):
if not callable(getattr(
self, attr_name)) and not attr_name.startswith("__"):
if attr_name not in ('model_format', 'workspace'):
setattr(self, attr_name, None)
release_gc()
@property
def workspace(self) -> str:
return self._workspace
@property
def model_format(self) -> _ModelFormatKind:
return self._model_format
def save(
self,
model: _ModelRuntimeContext,
model_dir: str,
engine_dir: str,
):
''' Save the built engine on a single GPU to the given path. '''
model.engine.save(engine_dir)
if model.mapping.rank == 0:
tokenizer = ModelLoader.load_hf_tokenizer(
model_dir,
trust_remote_code=self.llm_args.trust_remote_code,
use_fast=self.llm_args.tokenizer_mode != 'slow')
if tokenizer is not None:
tokenizer.save_pretrained(engine_dir)
def _download_hf_model(self):
''' Download HF model from third-party model hub like www.modelscope.cn or huggingface. '''
model_dir = None
speculative_model_dir = None
# Only the rank0 are allowed to download model
if mpi_rank() == 0:
assert self._workspace is not None
assert isinstance(self.model_obj.model_name, str)
# this will download only once when multiple MPI processes are running
model_dir = download_hf_model(self.model_obj.model_name,
revision=self.llm_args.revision)
print_colored(f"Downloaded model to {model_dir}\n", 'grey')
if self.speculative_model_obj:
speculative_model_dir = download_hf_model(
self.speculative_model_obj.model_name)
print_colored(f"Downloaded model to {speculative_model_dir}\n",
'grey')
# Make all the processes got the same model_dir
self._model_dir = mpi_broadcast(model_dir, root=0)
self.model_obj.model_dir = self._model_dir # mark as a local model
assert self.model_obj.is_local_model
if self.speculative_model_obj:
self._speculative_model_dir = mpi_broadcast(speculative_model_dir,
root=0)
self.speculative_model_obj.model_dir = self._speculative_model_dir
assert self.speculative_model_obj.is_local_model
def _update_from_hf_quant_config(self) -> bool:
"""Update quant_config from the config file of pre-quantized HF checkpoint.
Returns:
prequantized (bool): Whether the checkpoint is pre-quantized.
"""
quant_config = self.llm_args.quant_config
hf_quant_config_path = f"{self._model_dir}/hf_quant_config.json"
if os.path.exists(hf_quant_config_path):
logger.info(
f"Found {hf_quant_config_path}, pre-quantized checkpoint is used."
)
with open(hf_quant_config_path, "r") as f:
hf_quant_config = json.load(f)
hf_quant_config = hf_quant_config["quantization"]
hf_quant_algo = hf_quant_config.pop("quant_algo", None)
if hf_quant_algo is not None:
# fp8_pb_wo from modelopt is the same as fp8_block_scales
if hf_quant_algo == "fp8_pb_wo":
hf_quant_algo = QuantAlgo.FP8_BLOCK_SCALES
else:
hf_quant_algo = QuantAlgo(hf_quant_algo)
if quant_config.quant_algo is None:
logger.info(
f"Setting quant_algo={hf_quant_algo} form HF quant config."
)
quant_config.quant_algo = hf_quant_algo
elif quant_config.quant_algo != hf_quant_algo:
raise ValueError(
f"Specified quant_algo={quant_config.quant_algo}, conflicting with quant_algo={hf_quant_algo} from HF quant config."
)
else:
raise ValueError(
"Pre-quantized checkpoint must have quant_algo.")
hf_kv_cache_quant_algo = hf_quant_config.pop(
"kv_cache_quant_algo", None)
if hf_kv_cache_quant_algo is not None:
hf_kv_cache_quant_algo = QuantAlgo(hf_kv_cache_quant_algo)
if quant_config.kv_cache_quant_algo is None:
logger.info(
f"Setting kv_cache_quant_algo={hf_kv_cache_quant_algo} form HF quant config."
)
quant_config.kv_cache_quant_algo = hf_kv_cache_quant_algo
elif quant_config.kv_cache_quant_algo != hf_kv_cache_quant_algo:
raise ValueError(
f"Specified kv_cache_quant_algo={quant_config.kv_cache_quant_algo}, conflicting with kv_cache_quant_algo={hf_kv_cache_quant_algo} from HF quant config."
)
else:
if quant_config.kv_cache_quant_algo not in [
None, QuantAlgo.FP8, QuantAlgo.NVFP4
]:
raise ValueError(
f"Only kv_cache_quant_algo={QuantAlgo.FP8} or {QuantAlgo.NVFP4} is allowed for pre-quantized checkpoint, got {quant_config.kv_cache_quant_algo}."
)
for key, value in hf_quant_config.items():
logger.info(f"Setting {key}={value} from HF quant config.")
setattr(quant_config, key, value)
# Update the quant_config in llm_args for pytorch
self.llm_args.quant_config = quant_config
return True
hf_config_path = f"{self._model_dir}/config.json"
if os.path.exists(hf_config_path):
with open(hf_config_path, "r") as f:
hf_config = json.load(f)
hf_quant_config = hf_config.get("quantization_config", None)
if hf_quant_config is not None:
logger.info(
f"Found quantization_config field in {hf_config_path}, pre-quantized checkpoint is used."
)
# DeepSeek V3 FP8 ckpt
if hf_quant_config.get(
"quant_method") == "fp8" and hf_quant_config.get(
"weight_block_size"):
quant_config.quant_algo = QuantAlgo.FP8_BLOCK_SCALES
quant_config.exclude_modules = ["*eh_proj"]
elif hf_quant_config.get("quant_method") == "mxfp4":
from .._torch.model_config import ModelConfig
quant_config.quant_algo = ModelConfig.get_mxfp4_quant_algo(
self.llm_args.moe_config.backend)
quant_config.group_size = 32
quant_config.exclude_modules = [
'block.*.attn.out', 'block.*.mlp.gate',
'block.*.attn.qkv', 'embedding', 'unembedding'
]
else:
raise NotImplementedError(
f"Unsupported quantization_config: {hf_quant_config}.")
return True
return False
def _load_model_from_hf(self):
''' Load a TRT-LLM model from a HF model. '''
assert self._model_dir is not None
model_cls = AutoModelForCausalLM.get_trtllm_model_class(
self._model_dir, self.llm_args.trust_remote_code,
self.llm_args.decoding_config.decoding_mode
if hasattr(self.llm_args, "speculative_model_dir")
and self.llm_args.speculative_model_dir else None)
prequantized = self._update_from_hf_quant_config()
# FP4 Gemm force to use plugin.
if self.llm_args.quant_config.quant_mode.has_nvfp4():
self.llm_args.build_config.plugin_config.gemm_plugin = "nvfp4"
if self.llm_args.load_format == 'dummy':
config = model_cls.config_class.from_hugging_face(
str(self._model_dir),
dtype=self.llm_args.dtype,
mapping=self.mapping,
quant_config=self.llm_args.quant_config,
**self.convert_checkpoint_options,
)
self.model = model_cls(config)
elif self.llm_args.quant_config._requires_calibration and not prequantized:
assert self.workspace is not None
checkpoint_dir = f"{self.workspace}/quantized-checkpoint"
if self.rank == 0:
model_cls.quantize(
self._model_dir,
checkpoint_dir,
dtype=self.llm_args.dtype,
mapping=self.mapping,
quant_config=self.llm_args.quant_config,
**self.llm_args.calib_config.to_dict(),
trust_remote_code=self.llm_args.trust_remote_code,
)
if self.llm_args.parallel_config.is_multi_gpu:
mpi_barrier()
self.model = model_cls.from_checkpoint(checkpoint_dir,
rank=self.mapping.rank)
else:
self.model = model_cls.from_hugging_face(
str(self._model_dir),
dtype=self.llm_args.dtype,
mapping=self.mapping,
quant_config=self.llm_args.quant_config,
load_model_on_cpu=
True, # TODO:TRTLLM-195 to enhance the weights loading memory usage and chose best location
trust_remote_code=self.llm_args.trust_remote_code,
speculative_model_dir=self._speculative_model_dir,
speculative_config=self.llm_args.speculative_config
if not isinstance(self.llm_args.speculative_config,
LookaheadDecodingConfig) else None,
**self.convert_checkpoint_options,
)
self.pretrained_config = self.model.config
self._model_info = _ModelInfo.from_pretrained_config(
self.pretrained_config)
@print_traceback_on_error
def _load_model_from_ckpt(self):
''' Load a TRT-LLM model from checkpoint. '''
self.pretrained_config = PretrainedConfig.from_json_file(
os.path.join(self._model_dir, 'config.json'))
self.pretrained_config.mapping = self.mapping
#TODO: TRTLLM-1091, change the architecture in the checkpoint to TRT-LLM one, not HF one.
architecture = self.pretrained_config.architecture
assert architecture in MODEL_MAP, \
f"Unsupported model architecture: {architecture}"
model_cls = MODEL_MAP[architecture]
if self.llm_args.load_format == 'dummy':
self.model = model_cls(self.pretrained_config)
else:
self.model = model_cls.from_checkpoint(
self._model_dir, config=self.pretrained_config)
self._model_info = _ModelInfo.from_pretrained_config(
self.pretrained_config)
# load parallel embedding related options
self.convert_checkpoint_options[
'use_parallel_embedding'] = self.pretrained_config.use_parallel_embedding
def _build_engine_from_inmemory_model(self):
assert isinstance(self.llm_args.model, Module)
self._model_info = _ModelInfo.from_module(self.model)
@print_traceback_on_error
def _build_engine(self):
assert isinstance(
self.build_config,
BuildConfig), f"build_config is not set yet: {self.build_config}"
logger_debug(f"rank{mpi_rank()} begin to build engine...\n", "green")
# avoid the original build_config is modified, avoid the side effect
copied_build_config = copy.deepcopy(self.build_config)
copied_build_config.update_kv_cache_type(self._model_info.architecture)
assert self.model is not None, "model is loaded yet."
self._engine = build(self.model, copied_build_config)
self.mapping = self.model.config.mapping
# delete the model explicitly to free all the build-time resources
self.model = None
logger_debug(f"rank{mpi_rank()} build engine done\n", "green")
def _save_engine_for_runtime(self):
'''
Persist the engine to disk for the cpp runtime. Currently, the cpp runtime can accept an engine path,
that requires the engine should always be saved to disk.
This explicit saving will be removed in the future when the cpp runtime can accept the engine buffer directly.
But this is necessary for a build cache, but it can be optimized to async IO.
'''
if self.build_cache_enabled:
self._model_dir = self.engine_cache_stage.cache_dir
self._model_format = _ModelFormatKind.TLLM_ENGINE
return
def _load_engine_buffer(self):
# Load engine buffer from disk
self._engine = Engine.from_dir(self._model_dir)
@staticmethod
def load_hf_tokenizer(model_dir,
trust_remote_code: bool = True,
use_fast: bool = True,
**kwargs) -> Optional[TransformersTokenizer]:
if (tokenizer := load_hf_tokenizer(model_dir, trust_remote_code,
use_fast, **kwargs)) is not None:
return tokenizer
else:
logger.warning(f"Failed to load tokenizer from {model_dir}")
return None
@staticmethod
def load_hf_generation_config(
model_dir, **kwargs) -> Optional[transformers.GenerationConfig]:
try:
return transformers.GenerationConfig.from_pretrained(
model_dir, **kwargs)
except Exception as e:
logger.warning(
f"Failed to load hf generation config from {model_dir}, encounter error: {e}"
)
return None
@staticmethod
def load_hf_model_config(
model_dir,
trust_remote_code: bool = True,
**kwargs) -> Optional[transformers.PretrainedConfig]:
try:
return transformers.PretrainedConfig.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, **kwargs)
except Exception as e:
logger.warning(
f"Failed to load hf model config from {model_dir}, encounter error: {e}"
)
return None
class CachedModelLoader:
'''
The CacheModelLoader is used to build the model in both single or multi-gpu, with cache might be enabled.
'''
def __init__(
self,
llm_args: LlmArgs,
llm_build_stats: weakref.ReferenceType["LlmBuildStats"],
mpi_session: Optional[MpiSession] = None,
workspace: Optional[str] = None,
):
self.llm_args = llm_args
self.mpi_session = mpi_session
self._workspace = workspace or tempfile.TemporaryDirectory()
self.llm_build_stats = llm_build_stats
# This is used for build cache. To compute the cache key, a local HF model is required, it could be download
# from HF model hub, so this helps to hold the path.
self._hf_model_dir: Optional[Path] = None
@property
def workspace(self) -> Path:
return Path(self._workspace.name) if isinstance(
self._workspace, tempfile.TemporaryDirectory) else Path(
self._workspace)
def _submit_to_all_workers(
self,
task: Callable[..., Any],
*args,
**kwargs,
) -> List[Any]:
if self.llm_args.parallel_config.is_multi_gpu:
return self.mpi_session.submit_sync(task, *args, **kwargs)
else:
return [task(*args, **kwargs)]
def __call__(self) -> Tuple[Path, Union[Path, None]]:
if self.llm_args.model_format is _ModelFormatKind.TLLM_ENGINE:
return Path(self.llm_args.model), None
if self.llm_args.backend == "_autodeploy":
return None, ""
self.engine_cache_stage: Optional[CachedStage] = None
self._hf_model_dir = None
self.model_loader = ModelLoader(self.llm_args)
if self.llm_args.backend is not None:
if self.llm_args.backend not in ["pytorch", "_autodeploy"]:
raise ValueError(
f'backend {self.llm_args.backend} is not supported.')
if self.model_loader.model_obj.is_hub_model:
hf_model_dirs = self._submit_to_all_workers(
CachedModelLoader._node_download_hf_model,
model=self.model_loader.model_obj.model_name,
revision=self.llm_args.revision)
self._hf_model_dir = hf_model_dirs[0]
else:
self._hf_model_dir = self.model_loader.model_obj.model_dir
if self.llm_args.quant_config.quant_algo is not None:
logger.warning(
"QuantConfig for pytorch backend is ignored. You can load"
"quantized model with hf_quant_config.json directly.")
# Currently, this is to make updated quant_config visible by llm.args.quant_config
# TODO: Unify the logics with those in tensorrt_llm/_torch/model_config.py
self.model_loader._update_from_hf_quant_config()
return None, self._hf_model_dir
if self.model_loader.model_obj.is_hub_model:
# This will download the config.json from HF model hub, this helps to create a PretrainedConfig for
# cache key.
self._hf_model_dir = download_hf_pretrained_config(
self.model_loader.model_obj.model_name,
revision=self.llm_args.revision)
elif self.model_loader.model_obj.is_local_model:
self._hf_model_dir = self.model_loader.model_obj.model_dir if self.llm_args.model_format is _ModelFormatKind.HF else None
if self.build_cache_enabled:
print_colored("Build cache is enabled.\n", 'yellow')
self.engine_cache_stage = self._get_engine_cache_stage()
if self.engine_cache_stage.is_cached():
self.llm_build_stats.cache_hitted = True
print_colored(
f"Reusing cached engine in {self.engine_cache_stage.get_engine_path()}\n\n",
'grey')
self.model_loader.model_obj.model_dir = self.engine_cache_stage.get_engine_path(
)
self.llm_build_stats.engine_dir = self.model_loader.model_obj.model_dir
return self.llm_build_stats.engine_dir, self._hf_model_dir
return self._build_model(), self._hf_model_dir
def get_engine_dir(self) -> Path:
if self.llm_args.model_format is _ModelFormatKind.TLLM_ENGINE:
return self.model_obj.model_dir
# generate a new path for writing the engine
if self.build_cache_enabled:
cache_stage = self._get_engine_cache_stage()
return cache_stage.get_engine_path()
return self.workspace / "tmp.engine"
@property
def build_cache_enabled(self) -> bool:
_enable_build_cache, _ = get_build_cache_config_from_env()
return (self.llm_args.enable_build_cache
or _enable_build_cache) and (self.llm_args.model_format
is _ModelFormatKind.HF)
def _get_engine_cache_stage(self) -> CachedStage:
''' Get the cache stage for engine building. '''
build_cache = BuildCache(self.llm_args.enable_build_cache)
assert self._hf_model_dir is not None, "HF model dir is required for cache key."
def serialize(d) -> str:
if hasattr(d, "to_dict"):
dic = d.to_dict()
elif is_dataclass(d):
dic = asdict(d)
elif isinstance(d, BaseModel):
dic = d.model_dump(mode="json")
else:
raise ValueError(f"Could not serialize type: {type(d)}")
return json.dumps(dic, sort_keys=True)
parallel_config = self.llm_args.parallel_config
force_rebuild = False
if self.llm_args.model_format is not _ModelFormatKind.HF:
force_rebuild = True
return build_cache.get_engine_building_cache_stage(
build_config=self.llm_args.build_config,
model_path=self._hf_model_dir,
force_rebuild=force_rebuild,
# Other configs affecting the engine building
parallel_config=serialize(parallel_config),
pretrained_config=serialize(self.get_pretrained_config()),
quant_config=serialize(self.llm_args.quant_config),
)
def get_pretrained_config(self) -> PretrainedConfig:
''' Get the PretrainedConfig for cache key.
NOTE, this is not the HF model's config, but the TRT-LLM's config. We use this as a generic information for
HF and other models. '''
assert self._hf_model_dir is not None
return AutoConfig.from_hugging_face(
self._hf_model_dir,
mapping=self.llm_args.parallel_config.to_mapping(),
quant_config=self.llm_args.quant_config,
dtype=self.llm_args.dtype,
trust_remote_code=self.llm_args.trust_remote_code)
def _build_model(self) -> Path:
model_format = self.llm_args.model_format
def build_task(engine_dir: Path):
if model_format is not _ModelFormatKind.TLLM_ENGINE:
model_loader_kwargs = {
'llm_args': self.llm_args,
'workspace': str(self.workspace),
'llm_build_stats': self.llm_build_stats,
}
if self.llm_args.parallel_config.is_multi_gpu:
assert self.mpi_session
#mpi_session cannot be pickled so remove from self.llm_args
if self.llm_args.mpi_session:
del self.llm_args.mpi_session
# The engine_dir:Path will be stored to MPINodeState.state
build_infos = self.mpi_session.submit_sync(
CachedModelLoader._node_build_task,
engine_dir=engine_dir,
**model_loader_kwargs)
self.llm_build_stats.build_steps_info = build_infos[0]
else: # single-gpu
with ModelLoader(**model_loader_kwargs) as model_loader:
model_loader(engine_dir=engine_dir)
release_gc()
has_storage = True
if self.build_cache_enabled:
try:
# TODO[chunweiy]: Cover the case when the model is from HF model hub.
if self.model_loader.model_obj.is_local_model:
# This is not perfect, but will make build-cache much more robust.
free_storage = self.engine_cache_stage.parent.free_storage_in_gb(
)
model_size = get_directory_size_in_gb(
self.model_loader.model_obj.model_dir)
require_size = model_size * 1.3
has_storage = free_storage >= require_size
if not has_storage:
print_colored(
f"Build cache is disabled since the cache storage is too small.\n ",
'yellow')
print_colored(
f"Free storage: {free_storage}GB, Required storage: {require_size}GB\n",
'grey')
except ValueError:
has_storage = False
except Exception as e:
logger.error(e)
has_storage = False
if enable_llm_debug():
print_colored(f"Has cache storage: {has_storage}\n", 'yellow')
if has_storage:
with self.engine_cache_stage.write_guard() as engine_dir:
build_task(engine_dir)
self.llm_build_stats.cache_hitted = True
else:
print_colored(
"The cache directory is too small, build-cache is disabled.\n",
'grey')
self.llm_build_stats.cache_hitted = False
self.llm_build_stats.cache_info = "The cache root directory is too small."
if not (has_storage and self.build_cache_enabled):
build_task(self.get_engine_dir())
return self.get_engine_dir()
@print_traceback_on_error
@staticmethod
def _node_download_hf_model(
model: str,
revision: Optional[str] = None,
) -> Optional[Path]:
if local_mpi_rank() == 0:
return download_hf_model(model, revision)
else:
return None
@print_traceback_on_error
@staticmethod
def _node_build_task(
llm_args: LlmArgs,
workspace: Optional[str | tempfile.TemporaryDirectory] = None,
llm_build_stats: Optional['LlmBuildStats'] = None,
engine_dir: Optional[Path] = None,
):
if MPINodeState.is_initialized():
raise RuntimeError("The MPI node is already initialized.")
with ModelLoader(llm_args,
workspace=workspace,
llm_build_stats=llm_build_stats) as model_loader:
model_loader(engine_dir=engine_dir)
return model_loader.llm_build_stats.build_steps_info
def save(self, engine_dir: Path):
# copy the engine directory to the target directory
shutil.copytree(self.get_engine_dir(), engine_dir)
@dataclass
class LlmBuildStats:
''' LlmBuildStats is the statistics for the LLM model building. '''
# Whether the cache is hit for the engine
cache_hitted: bool = False
cache_info: Optional[str] = None
model_from_hf_hub: bool = False
local_model_dir: Optional[Path] = None
# The path to the trt-llm engine
engine_dir: Optional[Path] = None
# The build steps information, including the step name and the latency in seconds.
build_steps_info: List[Tuple[str, float]] = field(default_factory=list)
__all__ = [
'LlmArgs',
'LlmBuildStats',
'ModelLoader',
'_ModelRuntimeContext',
'_ModelInfo',
'_ParallelConfig',
'_ModelFormatKind',
'_ModelWrapper',
'BatchingType',
'ExecutorConfig',
'SchedulerConfig',
'KvCacheRetentionConfig',
'LookaheadDecodingConfig',
'MedusaDecodingConfig',
'MTPDecodingConfig',
'NGramDecodingConfig',
'DraftTargetDecodingConfig',
'UserProvidedDecodingConfig',
'ContextChunkingPolicy',
'CapacitySchedulerPolicy',
'BuildConfig',
'BuildCacheConfig',
'QuantConfig',
'CalibConfig',
'CudaGraphConfig',
'KvCacheConfig',
'CachedModelLoader',
'EagleDecodingConfig',
'update_llm_args_with_extra_dict',
'update_llm_args_with_extra_options',
]