mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
766 lines
25 KiB
C++
766 lines
25 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "tensorrt_llm/common/cudaBf16Wrapper.h"
|
|
#include "tensorrt_llm/common/cudaDriverWrapper.h"
|
|
#include "tensorrt_llm/common/cudaFp8Utils.h"
|
|
#include "tensorrt_llm/common/logger.h"
|
|
#include "tensorrt_llm/common/tllmException.h"
|
|
#include <algorithm>
|
|
#include <cinttypes>
|
|
#include <cublasLt.h>
|
|
#include <cublas_v2.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
#include <driver_types.h>
|
|
#include <fstream>
|
|
#include <iomanip>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <sstream>
|
|
#include <string>
|
|
#ifndef _WIN32 // Linux
|
|
#include <sys/sysinfo.h>
|
|
#endif // not WIN32
|
|
#include <vector>
|
|
#ifdef _WIN32 // Windows
|
|
#include <windows.h>
|
|
#undef ERROR // A Windows header file defines ERROR as 0, but it's used in our logger.h enum. Logging breaks without
|
|
// this undef.
|
|
#endif // WIN32
|
|
|
|
namespace tensorrt_llm::common
|
|
{
|
|
|
|
// workspace for cublas gemm : 32MB
|
|
#define CUBLAS_WORKSPACE_SIZE 33554432
|
|
|
|
typedef struct __align__(4)
|
|
{
|
|
half x, y, z, w;
|
|
}
|
|
|
|
half4;
|
|
|
|
/* **************************** type definition ***************************** */
|
|
|
|
enum CublasDataType
|
|
{
|
|
FLOAT_DATATYPE = 0,
|
|
HALF_DATATYPE = 1,
|
|
BFLOAT16_DATATYPE = 2,
|
|
INT8_DATATYPE = 3,
|
|
FP8_DATATYPE = 4
|
|
};
|
|
|
|
enum TRTLLMCudaDataType
|
|
{
|
|
FP32 = 0,
|
|
FP16 = 1,
|
|
BF16 = 2,
|
|
INT8 = 3,
|
|
FP8 = 4
|
|
};
|
|
|
|
enum class OperationType
|
|
{
|
|
FP32,
|
|
FP16,
|
|
BF16,
|
|
INT8,
|
|
FP8
|
|
};
|
|
|
|
/* **************************** debug tools ********************************* */
|
|
static char const* _cudaGetErrorEnum(cudaError_t error)
|
|
{
|
|
return cudaGetErrorString(error);
|
|
}
|
|
|
|
static char const* _cudaGetErrorEnum(cublasStatus_t error)
|
|
{
|
|
switch (error)
|
|
{
|
|
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
|
|
|
|
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
|
|
|
|
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
|
|
|
|
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
|
|
|
|
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
|
|
|
|
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
|
|
|
|
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
|
|
|
|
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
|
|
|
|
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
|
|
|
|
case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR";
|
|
}
|
|
return "<unknown>";
|
|
}
|
|
|
|
template <typename T>
|
|
void check(T ptr, char const* const func, char const* const file, int const line)
|
|
{
|
|
if (ptr)
|
|
{
|
|
throw TllmException(
|
|
file, line, fmtstr("[TensorRT-LLM][ERROR] CUDA runtime error in %s: %s", func, _cudaGetErrorEnum(ptr)));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void checkEx(
|
|
T ptr, std::initializer_list<T> const& validReturns, char const* const func, char const* const file, int const line)
|
|
{
|
|
if (std::all_of(std::begin(validReturns), std::end(validReturns), [&ptr](T const& t) { return t != ptr; }))
|
|
{
|
|
throw TllmException(
|
|
file, line, fmtstr("[TensorRT-LLM][ERROR] CUDA runtime error in %s: %s", func, _cudaGetErrorEnum(ptr)));
|
|
}
|
|
}
|
|
|
|
#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)
|
|
#define check_cuda_error_2(val, file, line) check((val), #val, file, line)
|
|
|
|
inline std::optional<bool> isCudaLaunchBlocking()
|
|
{
|
|
static bool firstCall = true;
|
|
static std::optional<bool> ptr = std::nullopt;
|
|
|
|
if (firstCall)
|
|
{
|
|
char const* env = std::getenv("CUDA_LAUNCH_BLOCKING");
|
|
if (env != nullptr && std::string(env) == "1")
|
|
{
|
|
ptr = true;
|
|
}
|
|
else if (env != nullptr && std::string(env) == "0")
|
|
{
|
|
ptr = false;
|
|
}
|
|
firstCall = false;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
inline bool doCheckError()
|
|
{
|
|
auto const cudaLaunchBlocking = isCudaLaunchBlocking();
|
|
#ifndef NDEBUG
|
|
bool const checkError = cudaLaunchBlocking.value_or(true);
|
|
#else
|
|
bool const checkError = cudaLaunchBlocking.value_or(false);
|
|
#endif
|
|
|
|
return checkError;
|
|
}
|
|
|
|
inline void syncAndCheck(char const* const file, int const line)
|
|
{
|
|
if (doCheckError())
|
|
{
|
|
cudaDeviceSynchronize();
|
|
check(cudaGetLastError(), "cudaGetLastError", file, line);
|
|
}
|
|
}
|
|
|
|
#define sync_check_cuda_error() tensorrt_llm::common::syncAndCheck(__FILE__, __LINE__)
|
|
|
|
#define PRINT_FUNC_NAME_() \
|
|
do \
|
|
{ \
|
|
std::cout << "[TensorRT-LLM][CALL] " << __FUNCTION__ << " " << std::endl; \
|
|
} while (0)
|
|
|
|
// clang-format off
|
|
template<typename T> struct packed_type;
|
|
template <> struct packed_type<float> { using type = float; }; // we don't need to pack float by default
|
|
template <> struct packed_type<half> { using type = half2; };
|
|
|
|
#ifdef ENABLE_BF16
|
|
template<>
|
|
struct packed_type<__nv_bfloat16> {
|
|
using type = __nv_bfloat162;
|
|
};
|
|
#endif
|
|
|
|
#ifdef ENABLE_FP8
|
|
template<>
|
|
struct packed_type<__nv_fp8_e4m3> {
|
|
using type = __nv_fp8x2_e4m3;
|
|
};
|
|
#endif
|
|
|
|
template<typename T> struct num_elems;
|
|
template <> struct num_elems<float> { static constexpr int value = 1; };
|
|
template <> struct num_elems<float2> { static constexpr int value = 2; };
|
|
template <> struct num_elems<float4> { static constexpr int value = 4; };
|
|
template <> struct num_elems<half> { static constexpr int value = 1; };
|
|
template <> struct num_elems<half2> { static constexpr int value = 2; };
|
|
#ifdef ENABLE_BF16
|
|
template <> struct num_elems<__nv_bfloat16> { static constexpr int value = 1; };
|
|
template <> struct num_elems<__nv_bfloat162> { static constexpr int value = 2; };
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
template <> struct num_elems<__nv_fp8_e4m3> { static constexpr int value = 1; };
|
|
template <> struct num_elems<__nv_fp8x2_e4m3> { static constexpr int value = 2; };
|
|
#endif
|
|
|
|
template<typename T, int num> struct packed_as;
|
|
template<typename T> struct packed_as<T, 1> { using type = T; };
|
|
template<> struct packed_as<half, 2> { using type = half2; };
|
|
template<> struct packed_as<float, 2> { using type = float2; };
|
|
template<> struct packed_as<int8_t, 2> { using type = int16_t; };
|
|
template<> struct packed_as<int32_t, 2> { using type = int2; };
|
|
template<> struct packed_as<half2, 1> { using type = half; };
|
|
template<> struct packed_as<float2, 1> { using type = float; };
|
|
#ifdef ENABLE_BF16
|
|
template<> struct packed_as<__nv_bfloat16, 2> { using type = __nv_bfloat162; };
|
|
template<> struct packed_as<__nv_bfloat162, 1> { using type = __nv_bfloat16; };
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
template<> struct packed_as<__nv_fp8_e4m3, 2> { using type = __nv_fp8x2_e4m3; };
|
|
template<> struct packed_as<__nv_fp8x2_e4m3, 1> { using type = __nv_fp8_e4m3; };
|
|
template<> struct packed_as<__nv_fp8_e5m2, 2> { using type = __nv_fp8x2_e5m2; };
|
|
template<> struct packed_as<__nv_fp8x2_e5m2, 1> { using type = __nv_fp8_e5m2; };
|
|
#endif
|
|
|
|
inline __device__ float2 operator*(float2 a, float2 b) { return make_float2(a.x * b.x, a.y * b.y); }
|
|
inline __device__ float2 operator+(float2 a, float2 b) { return make_float2(a.x + b.x, a.y + b.y); }
|
|
inline __device__ float2 operator-(float2 a, float2 b) { return make_float2(a.x - b.x, a.y - b.y); }
|
|
|
|
inline __device__ float2 operator*(float2 a, float b) { return make_float2(a.x * b, a.y * b); }
|
|
inline __device__ float2 operator+(float2 a, float b) { return make_float2(a.x + b, a.y + b); }
|
|
inline __device__ float2 operator-(float2 a, float b) { return make_float2(a.x - b, a.y - b); }
|
|
|
|
// clang-format on
|
|
|
|
template <typename T>
|
|
struct CudaDataType
|
|
{
|
|
};
|
|
|
|
template <>
|
|
struct CudaDataType<float>
|
|
{
|
|
static constexpr cudaDataType_t value = cudaDataType::CUDA_R_32F;
|
|
};
|
|
|
|
template <>
|
|
struct CudaDataType<half>
|
|
{
|
|
static constexpr cudaDataType_t value = cudaDataType::CUDA_R_16F;
|
|
};
|
|
|
|
#ifdef ENABLE_BF16
|
|
template <>
|
|
struct CudaDataType<__nv_bfloat16>
|
|
{
|
|
static constexpr cudaDataType_t value = cudaDataType::CUDA_R_16BF;
|
|
};
|
|
#endif
|
|
|
|
inline int getSMVersion()
|
|
{
|
|
int device{-1};
|
|
check_cuda_error(cudaGetDevice(&device));
|
|
int sm_major = 0;
|
|
int sm_minor = 0;
|
|
check_cuda_error(cudaDeviceGetAttribute(&sm_major, cudaDevAttrComputeCapabilityMajor, device));
|
|
check_cuda_error(cudaDeviceGetAttribute(&sm_minor, cudaDevAttrComputeCapabilityMinor, device));
|
|
return sm_major * 10 + sm_minor;
|
|
}
|
|
|
|
inline int getDevice()
|
|
{
|
|
int deviceID{0};
|
|
check_cuda_error(cudaGetDevice(&deviceID));
|
|
return deviceID;
|
|
}
|
|
|
|
inline int getDeviceCount()
|
|
{
|
|
int count{0};
|
|
check_cuda_error(cudaGetDeviceCount(&count));
|
|
return count;
|
|
}
|
|
|
|
/// @brief Identifies the memory type of the given pointer.
|
|
template <typename T>
|
|
cudaMemoryType getPtrCudaMemoryType(T* ptr)
|
|
{
|
|
cudaPointerAttributes attributes{};
|
|
check_cuda_error(cudaPointerGetAttributes(&attributes, ptr));
|
|
return attributes.type;
|
|
}
|
|
|
|
/// Get the memory info
|
|
/// \return The free and total amount of memory in bytes
|
|
inline std::tuple<size_t, size_t> getDeviceMemoryInfo(bool const useUvm)
|
|
{
|
|
if (useUvm)
|
|
{
|
|
size_t freeSysMem = 0;
|
|
size_t totalSysMem = 0;
|
|
#ifndef _WIN32 // Linux
|
|
struct sysinfo info
|
|
{
|
|
};
|
|
|
|
sysinfo(&info);
|
|
totalSysMem = info.totalram * info.mem_unit;
|
|
freeSysMem = info.freeram * info.mem_unit;
|
|
#else // Windows
|
|
MEMORYSTATUSEX memInfo;
|
|
memInfo.dwLength = sizeof(memInfo);
|
|
GlobalMemoryStatusEx(&memInfo);
|
|
totalSysMem = memInfo.ullTotalPhys;
|
|
freeSysMem = memInfo.ullAvailPhys;
|
|
#endif // WIN32
|
|
|
|
TLLM_LOG_INFO("Using UVM based system memory for KV cache, total memory %0.2f GB, available memory %0.2f GB",
|
|
((double) totalSysMem / 1e9), ((double) freeSysMem / 1e9));
|
|
return {freeSysMem, totalSysMem};
|
|
}
|
|
|
|
size_t free = 0;
|
|
size_t total = 0;
|
|
check_cuda_error(cudaMemGetInfo(&free, &total));
|
|
TLLM_LOG_DEBUG("Using GPU memory for KV cache, total memory %0.2f GB, available memory %0.2f GB",
|
|
((double) total / 1e9), ((double) free / 1e9));
|
|
return {free, total};
|
|
}
|
|
|
|
/// @brief Gets the memory allocation granularity for the current device.
|
|
///
|
|
/// @return size_t The size of the smallest difference in memory size supported by the current device.
|
|
inline size_t getAllocationGranularity()
|
|
{
|
|
auto const currentDevice = getDevice();
|
|
::CUmemAllocationProp prop = {};
|
|
|
|
prop.type = ::CU_MEM_ALLOCATION_TYPE_PINNED;
|
|
prop.location.type = ::CU_MEM_LOCATION_TYPE_DEVICE;
|
|
prop.location.id = currentDevice;
|
|
prop.requestedHandleTypes = ::CU_MEM_HANDLE_TYPE_NONE;
|
|
|
|
// Get the minimum granularity supported for allocation with cuMemCreate()
|
|
size_t granularity = 0;
|
|
TLLM_CU_CHECK(cuMemGetAllocationGranularity(&granularity, &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM));
|
|
return granularity;
|
|
}
|
|
|
|
inline int getMultiProcessorCount()
|
|
{
|
|
int nSM{0};
|
|
int deviceID{0};
|
|
check_cuda_error(cudaGetDevice(&deviceID));
|
|
check_cuda_error(cudaDeviceGetAttribute(&nSM, cudaDevAttrMultiProcessorCount, deviceID));
|
|
return nSM;
|
|
}
|
|
|
|
inline int getMaxSharedMemoryPerSM()
|
|
{
|
|
int nByteMaxSharedMemoryPerSM{0};
|
|
int deviceID{0};
|
|
check_cuda_error(cudaGetDevice(&deviceID));
|
|
check_cuda_error(
|
|
cudaDeviceGetAttribute(&nByteMaxSharedMemoryPerSM, cudaDevAttrMaxSharedMemoryPerMultiprocessor, deviceID));
|
|
return nByteMaxSharedMemoryPerSM;
|
|
}
|
|
|
|
inline int getMaxSharedMemoryPerBlockOptin()
|
|
{
|
|
int nByteMaxSharedMemoryPerBlockOptin{0};
|
|
int deviceID{0};
|
|
check_cuda_error(cudaGetDevice(&deviceID));
|
|
check_cuda_error(
|
|
cudaDeviceGetAttribute(&nByteMaxSharedMemoryPerBlockOptin, cudaDevAttrMaxSharedMemoryPerBlockOptin, deviceID));
|
|
return nByteMaxSharedMemoryPerBlockOptin;
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
inline size_t divUp(T1 const& a, T2 const& b)
|
|
{
|
|
auto const tmp_a = static_cast<size_t>(a);
|
|
auto const tmp_b = static_cast<size_t>(b);
|
|
return (tmp_a + tmp_b - 1) / tmp_b;
|
|
}
|
|
|
|
inline int roundUp(int a, int b)
|
|
{
|
|
return divUp(a, b) * b;
|
|
}
|
|
|
|
template <typename T, typename U, typename = std::enable_if_t<std::is_integral<T>::value>,
|
|
typename = std::enable_if_t<std::is_integral<U>::value>>
|
|
auto constexpr ceilDiv(T numerator, U denominator)
|
|
{
|
|
return (numerator + denominator - 1) / denominator;
|
|
}
|
|
|
|
template <typename T>
|
|
void printArrayInfo(T const* ptr, uint64_t nElement = 1, std::string name = "", bool const bPrintElement = false)
|
|
{
|
|
if (ptr == nullptr)
|
|
{
|
|
TLLM_LOG_WARNING("%s is an nullptr, skip!", name.c_str());
|
|
return;
|
|
}
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error(cudaGetLastError());
|
|
|
|
bool const isDevicePtr = (getPtrCudaMemoryType(ptr) == cudaMemoryTypeDevice);
|
|
size_t sizeInByte = sizeof(T) * nElement;
|
|
TLLM_LOG_TRACE("addr=%p, location=%s, sizeof(T)=%lu, nElement=%d, sizeInByte=%lu\n", ptr,
|
|
(isDevicePtr ? "Device" : "Host"), sizeof(T), nElement, sizeInByte);
|
|
T* tmp = const_cast<T*>(ptr);
|
|
std::vector<T> tmpVec; // For device pointer
|
|
if (isDevicePtr)
|
|
{
|
|
tmpVec.resize(nElement);
|
|
tmp = tmpVec.data();
|
|
check_cuda_error(cudaMemcpy(tmp, ptr, sizeInByte, cudaMemcpyDeviceToHost));
|
|
cudaDeviceSynchronize();
|
|
}
|
|
|
|
size_t nInf = 0;
|
|
size_t nNaN = 0;
|
|
size_t nZero = 0;
|
|
double sum = 0.0;
|
|
double sqrSum = 0.0;
|
|
double absSum = 0.0;
|
|
float allMax = -1.0e6f;
|
|
float allMin = 1.0e6f;
|
|
float allSad = 0.0f; // Sum Abs of Difference, to distinguish A and its transpose
|
|
float old = 0.0f;
|
|
for (uint64_t i = 0; i < nElement; i++)
|
|
{
|
|
float val = (float) tmp[i];
|
|
|
|
if (std::isinf(val))
|
|
{
|
|
nInf++;
|
|
continue;
|
|
}
|
|
if (std::isnan(val))
|
|
{
|
|
nNaN++;
|
|
continue;
|
|
}
|
|
nZero += (val == 0.0f);
|
|
sum += val;
|
|
sqrSum += val * val;
|
|
absSum += expf(val);
|
|
allMax = std::max(allMax, val);
|
|
allMin = std::min(allMin, val);
|
|
allSad += abs(val - old);
|
|
old = val;
|
|
}
|
|
float avg = sum / nElement;
|
|
float std = sqrtf(sqrSum / nElement - avg * avg);
|
|
|
|
TLLM_LOG_INFO("%s", name.c_str());
|
|
TLLM_LOG_INFO("size=%u, nInf=%zu, nNaN=%zu, nZero=%zu", nElement, nInf, nNaN, nZero);
|
|
TLLM_LOG_INFO("avg=%f, absSum: %f, std=%f, max=%f, min=%f, sad=%f", avg, absSum, std, allMax, allMin, allSad);
|
|
|
|
if (bPrintElement)
|
|
{
|
|
uint64_t constexpr nHead = 5;
|
|
std::stringstream ss;
|
|
ss << std::setw(10) << std::fixed << std::setprecision(3);
|
|
for (uint64_t i = 0; i < std::min(nElement, nHead); ++i)
|
|
{
|
|
ss << (float) tmp[i] << ", ";
|
|
}
|
|
if (nElement > nHead)
|
|
{
|
|
ss << " ... ";
|
|
for (uint64_t i = nElement - nHead; i < nElement; ++i)
|
|
{
|
|
ss << (float) tmp[i] << ", ";
|
|
}
|
|
}
|
|
TLLM_LOG_INFO("%s", ss.str().c_str());
|
|
}
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error(cudaGetLastError());
|
|
}
|
|
|
|
template void printArrayInfo(float const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
template void printArrayInfo(half const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
#ifdef ENABLE_BF16
|
|
template void printArrayInfo(__nv_bfloat16 const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
template void printArrayInfo(__nv_fp8_e4m3 const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
#endif
|
|
template void printArrayInfo(uint32_t const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
template void printArrayInfo(uint64_t const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
template void printArrayInfo(int const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
template void printArrayInfo(uint8_t const* ptr, uint64_t nElement, std::string name, bool const bPrintElement);
|
|
|
|
template <typename T>
|
|
void printToStream(T const* ptr, int const nElement, FILE* strm)
|
|
{
|
|
bool const split_rows = (strm == stdout);
|
|
if (ptr == nullptr)
|
|
{
|
|
TLLM_LOG_WARNING("Nullptr, skip!\n");
|
|
return;
|
|
}
|
|
std::vector<T> tmp(nElement, 0);
|
|
check_cuda_error(cudaMemcpy(tmp.data(), ptr, sizeof(T) * nElement, cudaMemcpyDeviceToHost));
|
|
for (int i = 0; i < nElement; ++i)
|
|
{
|
|
fprintf(strm, "%f, ", static_cast<float>(tmp[i]));
|
|
if (split_rows && ((i + 1) % 10) == 0)
|
|
fprintf(strm, "\n");
|
|
}
|
|
if (!split_rows || (nElement % 10) != 0)
|
|
{
|
|
fprintf(strm, "\n");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void printToScreen(T const* ptr, int const nElement)
|
|
{
|
|
printToStream(ptr, nElement, stdout);
|
|
}
|
|
|
|
template <typename T>
|
|
void print2dToStream(T const* ptr, int const nRow, int const nCol, int const nStride, FILE* strm)
|
|
{
|
|
if (ptr == nullptr)
|
|
{
|
|
TLLM_LOG_WARNING("Nullptr, skip!\n");
|
|
return;
|
|
}
|
|
for (int ri = 0; ri < nRow; ++ri)
|
|
{
|
|
T const* tmp = ptr + ri * nStride;
|
|
printToStream(tmp, nCol, strm);
|
|
}
|
|
fprintf(strm, "\n");
|
|
}
|
|
|
|
template <typename T>
|
|
void print2dToScreen(T const* ptr, int const nRow, int const nCol, int const nStride)
|
|
{
|
|
print2dToStream(ptr, nRow, nCol, nStride, stdout);
|
|
}
|
|
|
|
template <typename T>
|
|
void print2dToFile(std::string fname, T const* ptr, int const nRow, int const nCol, int const nStride)
|
|
{
|
|
FILE* fp = fopen(fname.c_str(), "wt");
|
|
if (fp != nullptr)
|
|
{
|
|
print2dToStream(ptr, nRow, nCol, nStride, fp);
|
|
fclose(fp);
|
|
}
|
|
}
|
|
|
|
__host__ __device__ inline void print_float_(float x)
|
|
{
|
|
printf("%7.3f ", x);
|
|
}
|
|
|
|
__host__ __device__ inline void print_element_(float x)
|
|
{
|
|
print_float_(x);
|
|
}
|
|
|
|
__host__ __device__ inline void print_element_(half x)
|
|
{
|
|
print_float_((float) x);
|
|
}
|
|
|
|
#ifdef ENABLE_BF16
|
|
__host__ __device__ inline void print_element_(__nv_bfloat16 x)
|
|
{
|
|
print_float_((float) x);
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENABLE_FP8
|
|
__host__ __device__ inline void print_element_(__nv_fp8_e4m3 x)
|
|
{
|
|
print_float_((float) x);
|
|
}
|
|
#endif
|
|
|
|
__host__ __device__ inline void print_element_(uint8_t ui)
|
|
{
|
|
printf("%7" PRIu32 " ", (unsigned int) ui);
|
|
}
|
|
|
|
__host__ __device__ inline void print_element_(uint32_t ul)
|
|
{
|
|
printf("%7" PRIu32 " ", ul);
|
|
}
|
|
|
|
__host__ __device__ inline void print_element_(uint64_t ull)
|
|
{
|
|
printf("%7" PRIu64 " ", ull);
|
|
}
|
|
|
|
__host__ __device__ inline void print_element_(int32_t il)
|
|
{
|
|
printf("%7" PRId32 " ", il);
|
|
}
|
|
|
|
__host__ __device__ inline void print_element_(int64_t ill)
|
|
{
|
|
printf("%7" PRId64 " ", ill);
|
|
}
|
|
|
|
template <typename T>
|
|
__host__ __device__ inline void print_elements(T const* ptr, int nRow, int nCol, int nStride)
|
|
{
|
|
for (int iRow = -1; iRow < nRow; ++iRow)
|
|
{
|
|
if (iRow >= 0)
|
|
{
|
|
printf("%07d|", iRow);
|
|
}
|
|
else
|
|
{
|
|
printf(" |"); // heading row
|
|
}
|
|
for (int iCol = 0; iCol < nCol; iCol += 1)
|
|
{
|
|
if (iRow >= 0)
|
|
{
|
|
print_element_(ptr[iRow * nStride + iCol]);
|
|
}
|
|
else
|
|
{
|
|
printf("%7d|", iCol); // heading colume
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
inline void printMatrix(T const* ptr, int nRow, int nCol, int nStride)
|
|
{
|
|
// `nRow` is length of row dimension
|
|
// `nStride` is length of column dimension
|
|
// `nCol` (<= nStride) is length for print per row
|
|
if (ptr == nullptr)
|
|
{
|
|
TLLM_LOG_WARNING("Nullptr, skip!\n");
|
|
return;
|
|
}
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error(cudaGetLastError());
|
|
|
|
bool const isDevicePtr = (getPtrCudaMemoryType(ptr) == cudaMemoryTypeDevice);
|
|
size_t sizeInByte = sizeof(T) * nRow * nStride;
|
|
TLLM_LOG_TRACE("addr=%p, location=%s, sizeof(T)=%lu, nRow=%d, nStride=%d, sizeInByte=%lu\n", ptr,
|
|
(isDevicePtr ? "Device" : "Host"), sizeof(T), nRow, nStride, sizeInByte);
|
|
if (isDevicePtr)
|
|
{
|
|
std::vector<T> tmpVec;
|
|
tmpVec.resize(nRow * nStride);
|
|
T* tmp = tmpVec.data();
|
|
check_cuda_error(cudaMemcpy(tmp, ptr, sizeInByte, cudaMemcpyDeviceToHost));
|
|
cudaDeviceSynchronize();
|
|
check_cuda_error(cudaGetLastError());
|
|
print_elements(tmp, nRow, nCol, nStride);
|
|
}
|
|
else
|
|
{
|
|
print_elements(ptr, nRow, nCol, nStride);
|
|
}
|
|
}
|
|
|
|
template void printMatrix(float const* ptr, int nRow, int nCol, int nStride);
|
|
template void printMatrix(half const* ptr, int nRow, int nCol, int nStride);
|
|
#ifdef ENABLE_BF16
|
|
template void printMatrix(__nv_bfloat16 const* ptr, int nRow, int nCol, int nStride);
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
template void printMatrix(__nv_fp8_e4m3 const* ptr, int nRow, int nCol, int nStride);
|
|
#endif
|
|
template void printMatrix(uint32_t const* ptr, int nRow, int nCol, int nStride);
|
|
template void printMatrix(uint64_t const* ptr, int nRow, int nCol, int nStride);
|
|
template void printMatrix(int const* ptr, int nRow, int nCol, int nStride);
|
|
template void printMatrix(uint8_t const* ptr, int nRow, int nCol, int nStride);
|
|
|
|
template <typename T>
|
|
__device__ inline void printMatrixDevice(T const* ptr, int nRow, int nCol, int nStride)
|
|
{
|
|
// `nRow` is length of row dimension
|
|
// `nStride` is length of column dimension
|
|
// `nCol` (<= nStride) is length for print per row
|
|
// Can be called inside kernels by one single thread
|
|
if (ptr == nullptr)
|
|
{
|
|
printf("Nullptr, skip!\n");
|
|
return;
|
|
}
|
|
size_t sizeInByte = sizeof(T) * nRow * nStride;
|
|
printf("addr=%p, sizeof(T)=%lu, nRow=%d, nStride=%d, sizeInByte=%lu\n", ptr, sizeof(T), nRow, nStride, sizeInByte);
|
|
print_elements(ptr, nRow, nCol, nStride);
|
|
}
|
|
|
|
template __device__ void printMatrixDevice(float const* ptr, int nRow, int nCol, int nStride);
|
|
template __device__ void printMatrixDevice(half const* ptr, int nRow, int nCol, int nStride);
|
|
#ifdef ENABLE_BF16
|
|
template __device__ void printMatrixDevice(__nv_bfloat16 const* ptr, int nRow, int nCol, int nStride);
|
|
#endif
|
|
#ifdef ENABLE_FP8
|
|
template __device__ void printMatrixDevice(__nv_fp8_e4m3 const* ptr, int nRow, int nCol, int nStride);
|
|
#endif
|
|
template __device__ void printMatrixDevice(uint32_t const* ptr, int nRow, int nCol, int nStride);
|
|
template __device__ void printMatrixDevice(uint64_t const* ptr, int nRow, int nCol, int nStride);
|
|
template __device__ void printMatrixDevice(int const* ptr, int nRow, int nCol, int nStride);
|
|
template __device__ void printMatrixDevice(uint8_t const* ptr, int nRow, int nCol, int nStride);
|
|
|
|
} // namespace tensorrt_llm::common
|
|
|
|
/*
|
|
* Macros compliant with TensorRT coding conventions
|
|
*/
|
|
#define TLLM_CUDA_CHECK(stat) \
|
|
do \
|
|
{ \
|
|
tensorrt_llm::common::check((stat), #stat, __FILE__, __LINE__); \
|
|
} while (0)
|
|
|
|
// We use singleton memory pool and the order of destructors depends on the compiler implementation. We find that the
|
|
// cudaFree/cudaFreeHost is called after cudaruntime destruction on Windows. There will be an cudaErrorCudartUnloading
|
|
// error. However, it is safe to ignore this error because the cuda runtime is already exited, we are no more worried
|
|
// about the memory leaks.
|
|
#define TLLM_CUDA_CHECK_FREE_RESOURCE(stat) \
|
|
do \
|
|
{ \
|
|
tensorrt_llm::common::checkEx((stat), {cudaSuccess, cudaErrorCudartUnloading}, #stat, __FILE__, __LINE__); \
|
|
} while (0)
|