TensorRT-LLMs/cpp/tensorrt_llm/common/opUtils.h
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

255 lines
14 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cublasMMWrapper.h"
#include "tensorrt_llm/common/workspace.h"
#include <NvInferRuntime.h>
#include <cublasLt.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#if ENABLE_MULTI_DEVICE
#include <nccl.h>
#endif // ENABLE_MULTI_DEVICE
#include <cstring>
#include <map>
#include <memory>
#include <nvml.h>
#include <optional>
#include <set>
#include <string>
#include <unordered_map>
namespace tensorrt_llm::common::op
{
// Write values into buffer
template <typename T>
void write(char*& buffer, T const& val)
{
std::memcpy(buffer, &val, sizeof(T));
buffer += sizeof(T);
}
// Read values from buffer
template <typename T>
void read(char const*& buffer, T& val)
{
auto* valPtr = reinterpret_cast<char*>(&val);
std::memcpy(valPtr, buffer, sizeof(T));
buffer += sizeof(T);
}
inline cudaDataType_t trtToCublasDtype(nvinfer1::DataType type)
{
switch (type)
{
case nvinfer1::DataType::kFLOAT: return CUDA_R_32F;
case nvinfer1::DataType::kHALF: return CUDA_R_16F;
#if defined(NV_TENSORRT_MAJOR) && NV_TENSORRT_MAJOR >= 9
case nvinfer1::DataType::kBF16: return CUDA_R_16BF;
#endif
default: TLLM_THROW("Not supported data type for cuBLAS");
}
}
// Like std::unique_ptr, but does not prevent generation of default copy constructor when used as class members.
// The copy constructor produces nullptr. So the plugin default copy constructor will not really copy this, and
// your clone() implementation is responsible for initializing such data members.
// With this we can simplify clone() implementation when there are many data members including at least one unique_ptr.
template <typename T, typename Del = std::default_delete<T>>
class UniqPtrWNullCopy : public std::unique_ptr<T, Del>
{
public:
using std::unique_ptr<T, Del>::unique_ptr;
// for compatibility with std::make_unique
explicit UniqPtrWNullCopy(std::unique_ptr<T, Del>&& src)
: std::unique_ptr<T, Del>::unique_ptr{std::move(src)}
{
}
// copy constructor produces nullptr
UniqPtrWNullCopy(UniqPtrWNullCopy const&)
: std::unique_ptr<T, Del>::unique_ptr{}
{
}
};
template <typename T>
std::size_t hash_combine(std::size_t seed, T const& value)
{
std::hash<T> hasher;
seed ^= hasher(value) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
return seed;
}
template <typename T>
struct TupleHash;
template <typename... Args>
struct TupleHash<std::tuple<Args...>>
{
std::size_t operator()(std::tuple<Args...> const& tuple) const noexcept
{
std::size_t seed = static_cast<std::size_t>(672807365);
return std::apply(
[&seed](auto const&... args)
{
((seed = hash_combine(seed, args)), ...);
return seed;
},
tuple);
}
};
// for testing only
void const* getCommSessionHandle();
} // namespace tensorrt_llm::common::op
inline bool isBuilding()
{
auto constexpr key = "IS_BUILDING";
auto const val = getenv(key);
return val != nullptr && std::string(val) == "1";
}
#if ENABLE_MULTI_DEVICE
#define NCCLCHECK(cmd) \
do \
{ \
ncclResult_t r = cmd; \
if (r != ncclSuccess) \
{ \
printf("Failed, NCCL error %s:%d '%s'\n", __FILE__, __LINE__, ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)
std::unordered_map<nvinfer1::DataType, ncclDataType_t>* getDtypeMap();
std::shared_ptr<ncclComm_t> getComm(std::set<int> const& group);
#endif // ENABLE_MULTI_DEVICE
//! To save GPU memory, all the plugins share the same cublas and cublasLt handle globally.
//! Get cublas and cublasLt handle for current cuda context
std::shared_ptr<cublasHandle_t> getCublasHandle();
std::shared_ptr<cublasLtHandle_t> getCublasLtHandle();
#ifndef DEBUG
#define PLUGIN_CHECK(status) \
do \
{ \
if (status != 0) \
abort(); \
} while (0)
#define ASSERT_PARAM(exp) \
do \
{ \
if (!(exp)) \
return STATUS_BAD_PARAM; \
} while (0)
#define ASSERT_FAILURE(exp) \
do \
{ \
if (!(exp)) \
return STATUS_FAILURE; \
} while (0)
#define CSC(call, err) \
do \
{ \
cudaError_t cudaStatus = call; \
if (cudaStatus != cudaSuccess) \
{ \
return err; \
} \
} while (0)
#define DEBUG_PRINTF(...) \
do \
{ \
} while (0)
#else
#define ASSERT_PARAM(exp) \
do \
{ \
if (!(exp)) \
{ \
fprintf(stderr, "Bad param - " #exp ", %s:%d\n", __FILE__, __LINE__); \
return STATUS_BAD_PARAM; \
} \
} while (0)
#define ASSERT_FAILURE(exp) \
do \
{ \
if (!(exp)) \
{ \
fprintf(stderr, "Failure - " #exp ", %s:%d\n", __FILE__, __LINE__); \
return STATUS_FAILURE; \
} \
} while (0)
#define CSC(call, err) \
do \
{ \
cudaError_t cudaStatus = call; \
if (cudaStatus != cudaSuccess) \
{ \
printf("%s %d CUDA FAIL %s\n", __FILE__, __LINE__, cudaGetErrorString(cudaStatus)); \
return err; \
} \
} while (0)
#define PLUGIN_CHECK(status) \
{ \
if (status != 0) \
{ \
DEBUG_PRINTF("%s %d CUDA FAIL %s\n", __FILE__, __LINE__, cudaGetErrorString(status)); \
abort(); \
} \
}
#define DEBUG_PRINTF(...) \
do \
{ \
printf(__VA_ARGS__); \
} while (0)
#endif // DEBUG
#define NVML_CHECK(cmd) \
do \
{ \
nvmlReturn_t r = cmd; \
if (r != NVML_SUCCESS) \
{ \
printf("Failed, NVML error %s:%d '%s'\n", __FILE__, __LINE__, nvmlErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)