TensorRT-LLMs/cpp/tensorrt_llm/kernels/beamSearchKernels.h
石晓伟 548b5b7310
Update TensorRT-LLM (#2532)
* blossom-ci.yml: run vulnerability scan on blossom

* open source efb18c1256f8c9c3d47b7d0c740b83e5d5ebe0ec

---------

Co-authored-by: niukuo <6831097+niukuo@users.noreply.github.com>
Co-authored-by: pei0033 <59505847+pei0033@users.noreply.github.com>
Co-authored-by: Kyungmin Lee <30465912+lkm2835@users.noreply.github.com>
Co-authored-by: Kaiyu Xie <26294424+kaiyux@users.noreply.github.com>
2024-12-04 21:16:56 +08:00

128 lines
6.4 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/kernels/topkLastDim.h" // Air TopK
namespace tensorrt_llm
{
namespace kernels
{
static constexpr size_t nMaxBeamWidth = 1024; // Max beam width supported in TRT-LLM now
static constexpr size_t nMaxBeamWidthForV1 = 8; // Max beam width for V1 kernels
static constexpr size_t nThreadForSmallBeamWidth = 256; // Max count of thread for V1 stage 1
static constexpr size_t nMaxVPartStage1 = 128; // Max vocab part count for V1 stage 1
struct BeamHypotheses
{
// clang-format off
// MBS: max_batch_size, BS: batch_size, BM: beam_width, MSL: max_seq_length
// %%: parameter name in file generation.py (python workflow)
// Candidate beams: a beam which generates end_id or its sequence length reaches MSL
// Candidate-Beam-Array (CBA): The arrays to place the candidate beams and related information
// Scalar values
bool bReturnNormedScore{false}; // return `normedScore` or `cumLogProbs`, always be `false` now
size_t nMaxBatchSize{0}; // buildtime max batch size
size_t nBatchSize{0}; // runtime batch size
size_t nBeamWidth{0}; //
size_t nMaxSeqLen{0}; //
size_t nVocabSize{0}; // vocab_size_padded
size_t nVPart{0}; // Count of vocab_size_padded divided
size_t nByteMaxSharedMemoryPerBlock{0}; // Device information
size_t nByteSharedMemoryStage1{0}; // Dynamic shared memory size of stage 1
size_t nByteSharedMemoryStage3{0}; // Static shared memory size of stage 3
// Pointers from SamplingConfig
float const* diversityRates{nullptr}; // [BS]
float const* lengthPenalties{nullptr}; // [BS]
int const* earlyStoppings{nullptr}; // [BS]
// Pointers from input
int const* inputLengths{nullptr}; // [BS, BM] %% context_length
int const* endIds{nullptr}; // [BS, BM] %% self.end_ids
runtime::SizeType32 const* batchSlots{nullptr}; // [BS]
// Pointers for output
int* outputIds{nullptr}; // [BS, BM, MSL] %% self.output_ids only used in gather_tree
float* logProbs{nullptr}; // [BS, BM, MSL] %% self.log_probs only used in gather_tree
float* logProbsTiled{nullptr}; // [MSL, MBS, BM] %% self.log_probs_tiled
int* sequenceLengths{nullptr}; // [BS, BM] %% self.sequence_length_buffer
float* cumLogProbs{nullptr}; // [BS, BM] %% self.cum_log_probs
// Pointers of CBA
int* outputIdsCBA{nullptr}; // [BS, BM*2, MSL] %% self.beam_hyps_output_ids_cba
float* logProbsCBA{nullptr}; // [BS, BM*2, MSL] %% self.beam_hyps_log_probs_cba
int* sequenceLengthsCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_seq_len_cba
float* cumLogProbsCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_cum_log_probs_cba
float* normedScoresCBA{nullptr}; // [BS, BM*2] %% self.beam_hyps_normed_scores_cba
int* numBeamsCBA{nullptr}; // [BS] %% self.beam_hyps_num_beams number of beams in CBA
float* minNormedScoresCBA{nullptr}; // [BS] %% self.beam_hyps_min_normed_scores worst score in CBA
// Pointers related to beam search process, they are initialized in those two functions:
// [gptDecoder.cpp] GptDecoder<T>::forward or [dynamicDecodeOp.cpp] FtDynamicDecode<T>::forward
bool* batchDones{nullptr}; // [BS] %% self.beam_hyps_is_done whether a whole batch is finished
FinishedState* finished{nullptr}; // [BS*BM] %% self.finished whether and how a beam is finished
// Pointers for backtrack of the beams, they are relocated in [dynamicDecodeLayer.cpp] DynamicDecodeLayer<T>::prepareIdsPtrs
int** outputIdsPtr{nullptr}; // [BS][BM, MSL] %% self.output_ids
int** parentIdsPtr{nullptr}; // [BS][BM, MSL] %% self.parent_ids
// Pointers for gather_tree(), read the unfinished beams from them and write to CBA for the final selection
int const* outputIdsUnfinish{nullptr}; // [BS, BM, MSL] %% self.output_ids
int const* parentIdsUnfinish{nullptr}; // [BS, BM, MSL] %% self.parent_ids
// clang-format on
};
__inline__ int padToNextPowerOfTwo(int const n)
{
// Pad n up to the nearest power of 2
int recursor = n - 1;
int res = 2;
while (recursor >>= 1)
res <<= 1;
return res;
}
template <typename T>
__device__ __forceinline__ T applyLengthPenalty(T const log_prob, int const length, float const length_penalty)
{
// score = log(prob) / (length ^ length_penalty)
if (length_penalty == 0.0f || length == 1)
{
return log_prob;
}
return log_prob / static_cast<T>(powf(static_cast<float>(length), length_penalty));
}
template <typename T, bool IS_V2>
void invokeTopkBeamSearch(T const* logProbs, T const* bias, void* workspace, BeamHypotheses& bh, cudaStream_t stream);
template <typename T>
__global__ void addCumLogProbs(T* __restrict pStage1Probs, float const* __restrict cumLogProbs,
FinishedState const* finished, int const* endIds, float const* diversityRates,
runtime::SizeType32 const* batchSlots, size_t const nBS, size_t const nBM);
__global__ void gatherId(
int const* __restrict pStage1Id, int* __restrict pStage2Id, size_t const nBS, size_t const nBM, size_t const nV);
} // namespace kernels
} // namespace tensorrt_llm