TensorRT-LLMs/cpp/tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/kernelUtils.cpp
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

228 lines
6.9 KiB
C++

/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/kernels/decoderMaskedMultiheadAttention/decoderXQAImplJIT/kernelUtils.h"
#include "tensorrt_llm/common/utils.h"
namespace tensorrt_llm
{
namespace kernels
{
namespace jit
{
namespace
{
using tensorrt_llm::common::contains;
bool supportConfigCommon(XQAParams const& xqaParams, bool forConfigurePlugin)
{
if (xqaParams.unidirectional != 1)
{
return false;
}
if (xqaParams.mask_type != tensorrt_llm::kernels::AttentionMaskType::CAUSAL)
{
return false;
}
if (xqaParams.cross_attention)
{
return false;
}
if (xqaParams.position_shift_enabled || xqaParams.sink_token_length > 0)
{
return false;
}
if (xqaParams.num_kv_heads != 0 && xqaParams.num_q_heads % xqaParams.num_kv_heads != 0)
{
return false;
}
bool is_vanilla_mha = xqaParams.num_kv_heads == 0 || xqaParams.num_q_heads == xqaParams.num_kv_heads;
if (is_vanilla_mha && xqaParams.beam_width == 1)
{
// Do not use XQA kernel for vanilla MHA case for performance reasons.
return false;
}
if (is_vanilla_mha && xqaParams.head_size <= 128)
{
// TODO(yaoy): remove this when the kernel bug for num_kv_heads <= 128 gets fixed.
return false;
}
if (!contains({PositionEmbeddingType::kROPE_GPTJ, PositionEmbeddingType::kROPE_GPT_NEOX,
PositionEmbeddingType::kROPE_M, PositionEmbeddingType::kLONG_ROPE},
xqaParams.position_embedding_type))
{
return false;
}
return true;
}
} // anonymous namespace
bool supportConfigQGMMA(XQAParams const& xqaParams, int SM, bool forConfigurePlugin)
{
if (!supportConfigCommon(xqaParams, forConfigurePlugin))
{
return false;
}
if (SM != kSM_90)
{
return false;
}
if (!contains({DATA_TYPE_FP16, DATA_TYPE_BF16}, xqaParams.data_type))
{
return false;
}
if (xqaParams.kv_cache_data_type != DATA_TYPE_E4M3)
{
return false;
}
if (xqaParams.beam_width != 1)
{
return false;
}
if (xqaParams.head_size % 16 != 0 || xqaParams.head_size < 16 || xqaParams.head_size > 256)
{
return false;
}
int32_t head_grp_size = xqaParams.num_kv_heads == 0 ? 1 : xqaParams.num_q_heads / xqaParams.num_kv_heads;
if (head_grp_size * xqaParams.beam_width > 32)
{
return false;
}
if (xqaParams.paged_kv_cache && !contains({8, 16, 32, 64, 128}, xqaParams.tokens_per_block))
{
return false;
}
return true;
}
bool supportConfigHMMA(XQAParams const& xqaParams, int SM, bool forConfigurePlugin)
{
if (!supportConfigCommon(xqaParams, forConfigurePlugin))
{
return false;
}
if (SM < kSM_80)
{
return false;
}
if (!contains({DATA_TYPE_FP16, DATA_TYPE_BF16}, xqaParams.data_type))
{
return false;
}
if (!contains({DATA_TYPE_FP16, DATA_TYPE_BF16, DATA_TYPE_INT8, DATA_TYPE_E4M3}, xqaParams.kv_cache_data_type))
{
return false;
}
if (xqaParams.beam_width != 1 && xqaParams.beam_width != 4)
{
return false;
}
if (!forConfigurePlugin)
{
// Inference time checks.
if (xqaParams.host_past_key_value_lengths == nullptr)
{
return false;
}
if (!xqaParams.multi_query_tokens && xqaParams.beam_width != 1
&& xqaParams.max_past_kv_length + 1 > xqaParams.cyclic_attention_window_size)
{
return false;
}
// @fixme: should work but it triggers illegal mem address in invokeQKVPreprocessing.
// Hopper XQA is fine because it does not use invokeQKVPreprocessing.
if (xqaParams.max_past_kv_length + 1 > xqaParams.cyclic_attention_window_size)
{
return false;
}
}
if (xqaParams.head_size % 16 != 0 || xqaParams.head_size < 16 || xqaParams.head_size > 256)
{
return false;
}
int32_t head_grp_size = xqaParams.num_kv_heads == 0 ? 1 : xqaParams.num_q_heads / xqaParams.num_kv_heads;
if (head_grp_size * xqaParams.beam_width > 32)
{
return false;
}
if (xqaParams.paged_kv_cache && !contains({16, 32, 64, 128}, xqaParams.tokens_per_block))
{
return false;
}
return true;
}
bool supportConfigTllmGen(
XQAParams const& xqaParams, int SM, bool forConfigurePlugin, TllmGenFmhaRunner const* tllmGenRunner)
{
if (!supportConfigCommon(xqaParams, forConfigurePlugin))
{
return false;
}
if (SM < kSM_100 || SM == kSM_120)
{
return false;
}
if (!contains({DATA_TYPE_FP16, DATA_TYPE_BF16}, xqaParams.data_type))
{
return false;
}
if (!contains({DATA_TYPE_FP16, DATA_TYPE_BF16, DATA_TYPE_E4M3}, xqaParams.kv_cache_data_type))
{
return false;
}
if (xqaParams.beam_width != 1)
{
return false;
}
// NOTE(tizheng): TRTLLM-GEN XQA kernel has FP8 IO type.
if (!forConfigurePlugin && (xqaParams.kv_cache_data_type == DATA_TYPE_E4M3) && (xqaParams.fp8_out_scale == nullptr))
{
return false;
}
// Check if kernel can be found.
if (!forConfigurePlugin)
{
TLLM_CHECK_WITH_INFO(tllmGenRunner, "TRTLLM-GEN runner is not initialized.");
// Create TllmGenFmhaRunnerParams based on XQAParams. Only fill necessary
// attributes for kernel selection.
TllmGenFmhaRunnerParams runnerParams;
memset(&runnerParams, 0, sizeof(runnerParams));
runnerParams.mQkvLayout
= xqaParams.paged_kv_cache ? kernels::QkvLayout::PagedKv : kernels::QkvLayout::ContiguousKv;
runnerParams.mMaskType = TrtllmGenAttentionMaskType::Dense;
runnerParams.mKernelType = FmhaKernelType::Generation;
// TODO: use a heuristic for tileScheduler and multiCtasKvMode.
runnerParams.mTileScheduler = TileScheduler::Static;
runnerParams.mMultiCtasKvMode = false;
runnerParams.mHeadDim = xqaParams.head_size;
runnerParams.mNumTokensPerPage = xqaParams.tokens_per_block;
runnerParams.mNumHeadsQPerKv = xqaParams.num_q_heads / xqaParams.num_kv_heads;
bool foundKernels = tllmGenRunner->isSupported(runnerParams);
if (!foundKernels)
{
return false;
}
}
return true;
}
} // namespace jit
} // namespace kernels
} // namespace tensorrt_llm