mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
318 lines
14 KiB
Plaintext
318 lines
14 KiB
Plaintext
/*
|
|
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/assert.h"
|
|
#include "tensorrt_llm/common/cudaTypeUtils.cuh"
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
|
|
#include "tensorrt_llm/kernels/speculativeDecoding/externalDraftTokensKernels.h"
|
|
#ifndef CUDART_VERSION
|
|
#error CUDART_VERSION Undefined!
|
|
#elif (CUDART_VERSION >= 11050)
|
|
#include <cub/cub.cuh>
|
|
#else
|
|
#include "3rdparty/cub/cub.cuh"
|
|
#endif
|
|
|
|
using namespace tensorrt_llm::common;
|
|
using namespace tensorrt_llm::runtime;
|
|
|
|
namespace tensorrt_llm::kernels::speculative_decoding
|
|
{
|
|
namespace
|
|
{
|
|
|
|
template <typename T>
|
|
__global__ void maskTargetLogitsKernel(T* targetLogits, SizeType32 const* batchSlots, SizeType32 beamWidth,
|
|
SizeType32 vocabSize, FinishedState const* finishedInput, SizeType32 maxBatchSize,
|
|
SizeType32* outputIdsAfterSampling, SizeType32* runtimeTopKDevicePtr, bool* maskBuffer)
|
|
{
|
|
/**
|
|
* @brief Masking the selected token to -inf as was done in Huggingface TopK/TopP Logits Warper
|
|
* https://github.com/huggingface/transformers/blob/2e24ee4dfa39cc0bc264b89edbccc373c8337086/src/transformers/generation/logits_process.py#L533
|
|
*/
|
|
|
|
auto const bid = blockIdx.x;
|
|
auto const batchIdx = bid / beamWidth;
|
|
auto const tid = static_cast<SizeType32>(threadIdx.x);
|
|
auto const batchSlot = batchSlots[batchIdx];
|
|
|
|
constexpr bool IS_HALF = std::is_same<T, half>::value;
|
|
T const MAX_T_VAL = (IS_HALF) ? HALF_FLT_MAX : FLT_MAX;
|
|
|
|
auto targetLogitsBatch = targetLogits + batchIdx * vocabSize;
|
|
auto& finishedState = finishedInput[batchSlot];
|
|
|
|
auto* outputIdsAfterSamplingPtr = outputIdsAfterSampling + batchSlot * vocabSize;
|
|
auto* maskBufferBatch = maskBuffer + batchSlot * vocabSize;
|
|
|
|
if (finishedState.isSkipDecoding() || finishedState.isFinished())
|
|
{
|
|
return;
|
|
}
|
|
|
|
__shared__ SizeType32 tokensToMask;
|
|
|
|
if (tid == 0)
|
|
{
|
|
tokensToMask = runtimeTopKDevicePtr[batchSlot];
|
|
}
|
|
__syncthreads();
|
|
|
|
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
if (outputIdsAfterSamplingPtr[vIdx] == -1)
|
|
{ // we need to find the -1 boundary from returnAllTopP outputIds if topK == 0 or number of topP indices < topK
|
|
tokensToMask = vIdx;
|
|
}
|
|
maskBufferBatch[vIdx] = false;
|
|
}
|
|
|
|
__syncthreads();
|
|
if (tid == 0 && tokensToMask == 0)
|
|
{
|
|
// all tokens are selected if topK == 0 && topP ~= 1.0f
|
|
// in this case tokensToMask = vocabSize
|
|
tokensToMask = vocabSize;
|
|
}
|
|
__syncthreads();
|
|
|
|
for (SizeType32 vIdx = tid; vIdx < tokensToMask; vIdx += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
auto tokenToMask = outputIdsAfterSamplingPtr[vIdx];
|
|
maskBufferBatch[tokenToMask] = true;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
if (!maskBufferBatch[vIdx])
|
|
{
|
|
targetLogitsBatch[vIdx] = -MAX_T_VAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void acceptDraftTokensKernel(T const* draftProbs, T* targetProbs, SizeType32 const* numsDraftTokens,
|
|
bool const* batchUseDraftLogits, TokenIdType const* draftIds, FinishedState const* finishedInput,
|
|
FinishedState* finishedOutput, curandState_t* curandState, SizeType32 const* batchSlots, SizeType32 maxDraftTokens,
|
|
SizeType32 beamWidth, SizeType32 vocabSize, bool randomThreshold, float constantThreshold, SizeType32 step,
|
|
bool* batchIsAccepted, SizeType32* targetOutputIds)
|
|
{
|
|
auto const bid = blockIdx.x;
|
|
auto const draftTokenIdx = step;
|
|
auto const batchIdx = bid / beamWidth;
|
|
auto const beamIdx = bid % beamWidth;
|
|
auto const batchSlot = batchSlots[batchIdx];
|
|
auto const batchSlotBeamWidth = batchSlot * beamWidth + beamIdx;
|
|
auto const tid = static_cast<SizeType32>(threadIdx.x);
|
|
|
|
auto const numDraftTokens = numsDraftTokens[batchSlotBeamWidth];
|
|
auto const useDraftLogits = batchUseDraftLogits[batchSlotBeamWidth];
|
|
|
|
if (numDraftTokens == 0 || draftTokenIdx > numDraftTokens || finishedInput[batchSlot].isSkipDecoding()
|
|
|| finishedInput[batchSlot].isFinished())
|
|
{
|
|
if (tid == 0)
|
|
{
|
|
batchIsAccepted[batchSlot] = true;
|
|
|
|
// either finished or skip decode in previous step, this step don't need decoding
|
|
finishedOutput[batchSlot].setSkipDecoding();
|
|
|
|
// if previous step is finished, write the state to next step too
|
|
if (finishedInput[batchSlot].isFinished())
|
|
{
|
|
finishedOutput[batchSlot] = finishedInput[batchSlot];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (draftTokenIdx == numDraftTokens)
|
|
{
|
|
if (tid == 0)
|
|
{
|
|
batchIsAccepted[batchSlot] = false;
|
|
finishedOutput[batchSlot].setSkipDecoding();
|
|
}
|
|
return;
|
|
}
|
|
// else (draftTokenIdx < numDraftTokens)
|
|
|
|
auto const logitsOffset = (batchSlot * maxDraftTokens + draftTokenIdx) * beamWidth * vocabSize;
|
|
auto const draftProbsBatch = draftProbs + logitsOffset;
|
|
auto const targetProbsBatch = targetProbs + (batchIdx * beamWidth * vocabSize);
|
|
|
|
__shared__ bool isAccepted;
|
|
__shared__ T sSumVal;
|
|
if (tid == 0)
|
|
{
|
|
auto const draftOutputTokenId = draftIds[batchSlot * maxDraftTokens + draftTokenIdx];
|
|
if (useDraftLogits)
|
|
{
|
|
float threshold = randomThreshold ? curand_uniform(curandState + batchSlot) : constantThreshold;
|
|
auto const targetProb = static_cast<float>(targetProbsBatch[draftOutputTokenId]);
|
|
auto const draftProb = static_cast<float>(draftProbsBatch[draftOutputTokenId]);
|
|
isAccepted = targetProb > threshold * draftProb;
|
|
}
|
|
else
|
|
{
|
|
// Check if draft tokens are the same as target tokens
|
|
isAccepted = targetOutputIds[batchSlot] == draftOutputTokenId;
|
|
}
|
|
if (!isAccepted)
|
|
{
|
|
finishedOutput[batchSlot].setSkipDecoding();
|
|
}
|
|
batchIsAccepted[batchSlot] = isAccepted;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
if (useDraftLogits && !isAccepted)
|
|
{
|
|
// correct target distribution
|
|
T const zeroVal = static_cast<T>(0.0F);
|
|
T sumVal = zeroVal;
|
|
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
targetProbsBatch[vIdx] -= draftProbsBatch[vIdx];
|
|
targetProbsBatch[vIdx] = targetProbsBatch[vIdx] >= zeroVal ? targetProbsBatch[vIdx] : zeroVal;
|
|
sumVal += targetProbsBatch[vIdx];
|
|
}
|
|
sumVal = blockReduceSum<T>(sumVal);
|
|
if (tid == 0)
|
|
{
|
|
sSumVal = sumVal;
|
|
}
|
|
__syncthreads();
|
|
|
|
for (SizeType32 vIdx = tid; vIdx < vocabSize; vIdx += static_cast<SizeType32>(blockDim.x))
|
|
{
|
|
targetProbsBatch[vIdx] /= sSumVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
__global__ void forwardAcceptedTokensKernel(SizeType32 batchSize, SizeType32 const* batchSlots, bool* batchIsAccepted,
|
|
SizeType32* sequenceLengths, TokenIdType const* draftIds, TokenIdType** idsPtrs, SizeType32 step,
|
|
SizeType32 maxDraftTokens, TokenIdType const* endIds, FinishedState* finishedOutput)
|
|
{
|
|
auto index = static_cast<SizeType32>(blockIdx.x * blockDim.x + threadIdx.x);
|
|
for (SizeType32 bi = index; bi < batchSize; bi += static_cast<SizeType32>(gridDim.x * blockDim.x))
|
|
{
|
|
auto const batchSlot = batchSlots[bi];
|
|
if (batchIsAccepted[batchSlot] && !finishedOutput[batchSlot].isSkipDecoding()
|
|
&& !finishedOutput[batchSlot].isFinished())
|
|
{
|
|
auto const curSeqLen = sequenceLengths[batchSlot];
|
|
auto const draftTokenIdx = step;
|
|
auto const draftOutputTokenId = draftIds[batchSlot * maxDraftTokens + draftTokenIdx];
|
|
auto* outputIdsRequestPtr = idsPtrs[batchSlot];
|
|
auto const outIdx = curSeqLen;
|
|
outputIdsRequestPtr[outIdx] = draftOutputTokenId;
|
|
if (outputIdsRequestPtr[outIdx] == endIds[batchSlot])
|
|
{
|
|
finishedOutput[batchSlot].setFinishedEOS();
|
|
// Do not increase seq len when EOS is generated. Seq len should always contain only tokens to be
|
|
// outputted
|
|
}
|
|
else
|
|
{
|
|
// We don't need to set output finished state as it is assumed to be in non finished state
|
|
sequenceLengths[batchSlot] += 1;
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
void invokeMaskTargetLogits(SizeType32 batchSize, T* targetLogits, SizeType32 const* batchSlots, SizeType32 beamWidth,
|
|
SizeType32 vocabSizePadded, FinishedState const* finishedInput, SizeType32 maxBatchSize,
|
|
SizeType32* outputIdsAfterSampling, SizeType32* runtimeTopKDevicePtr, bool* maskBuffer, cudaStream_t stream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
TLLM_CHECK(beamWidth == 1);
|
|
{
|
|
dim3 block(1024);
|
|
dim3 grid(batchSize * beamWidth);
|
|
maskTargetLogitsKernel<<<grid, block, 0, stream>>>(targetLogits, batchSlots, beamWidth, vocabSizePadded,
|
|
finishedInput, maxBatchSize, outputIdsAfterSampling, runtimeTopKDevicePtr, maskBuffer);
|
|
}
|
|
sync_check_cuda_error();
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template <typename T>
|
|
void invokeAcceptDraftTokens(SizeType32 batchSize, T* draftProbs, T* targetProbs, SizeType32 const* numsDraftTokens,
|
|
bool const* batchUseDraftLogits, TokenIdType const* draftIds, FinishedState const* finishedInput,
|
|
FinishedState* finishedOutput, curandState_t* curandState, SizeType32 const* batchSlots, SizeType32 maxDraftTokens,
|
|
SizeType32 beamWidth, SizeType32 vocabSizePadded, bool randomThreshold, float constantThreshold, SizeType32 step,
|
|
bool* batchIsAccepted, SizeType32* targetOutputIds, cudaStream_t stream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
TLLM_CHECK(beamWidth == 1);
|
|
{
|
|
dim3 block(1024);
|
|
dim3 grid(batchSize * beamWidth);
|
|
acceptDraftTokensKernel<<<grid, block, 0, stream>>>(draftProbs, targetProbs, numsDraftTokens,
|
|
batchUseDraftLogits, draftIds, finishedInput, finishedOutput, curandState, batchSlots, maxDraftTokens,
|
|
beamWidth, vocabSizePadded, randomThreshold, constantThreshold, step, batchIsAccepted, targetOutputIds);
|
|
}
|
|
sync_check_cuda_error();
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
|
|
template void invokeMaskTargetLogits(SizeType32 batchSize, float* targetLogits, SizeType32 const* batchSlots,
|
|
SizeType32 beamWidth, SizeType32 vocabSizePadded, FinishedState const* finishedInput, SizeType32 maxBatchSize,
|
|
SizeType32* outputIdsAfterSampling, SizeType32* runtimeTopKDevicePtr, bool* maskBuffer, cudaStream_t stream);
|
|
template void invokeMaskTargetLogits(SizeType32 batchSize, half* targetLogits, SizeType32 const* batchSlots,
|
|
SizeType32 beamWidth, SizeType32 vocabSizePadded, FinishedState const* finishedInput, SizeType32 maxBatchSize,
|
|
SizeType32* outputIdsAfterSampling, SizeType32* runtimeTopKDevicePtr, bool* maskBuffer, cudaStream_t stream);
|
|
|
|
template void invokeAcceptDraftTokens(SizeType32 batchSize, float* draftProbs, float* targetProbs,
|
|
SizeType32 const* numsDraftTokens, bool const* batchUseDraftLogits, TokenIdType const* draftIds,
|
|
FinishedState const* finishedInput, FinishedState* finishedOutput, curandState_t* curandState,
|
|
SizeType32 const* batchSlots, SizeType32 maxDraftTokens, SizeType32 beamWidth, SizeType32 vocabSizePadded,
|
|
bool randomThreshold, float constantThreshold, SizeType32 step, bool* batchIsAccepted, SizeType32* targetOutputIds,
|
|
cudaStream_t stream);
|
|
template void invokeAcceptDraftTokens(SizeType32 batchSize, half* draftProbs, half* targetProbs,
|
|
SizeType32 const* numsDraftTokens, bool const* batchUseDraftLogits, TokenIdType const* draftIds,
|
|
FinishedState const* finishedInput, FinishedState* finishedOutput, curandState_t* curandState,
|
|
SizeType32 const* batchSlots, SizeType32 maxDraftTokens, SizeType32 beamWidth, SizeType32 vocabSizePadded,
|
|
bool randomThreshold, float constantThreshold, SizeType32 step, bool* batchIsAccepted, SizeType32* targetOutputIds,
|
|
cudaStream_t stream);
|
|
|
|
void invokeForwardAcceptedTokens(SizeType32 batchSize, SizeType32 const* batchSlots, bool* batchIsAccepted,
|
|
SizeType32* outputSequenceLengths, TokenIdType const* draftIds, TokenIdType** idsPtrs, SizeType32 step,
|
|
SizeType32 maxDraftTokens, TokenIdType const* endIds, FinishedState* finishedOutput, cudaStream_t stream)
|
|
{
|
|
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
|
|
dim3 block(std::min(static_cast<uint32_t>(batchSize), 256u));
|
|
dim3 grid(divUp(static_cast<uint32_t>(batchSize), block.x));
|
|
forwardAcceptedTokensKernel<<<grid, block, 0, stream>>>(batchSize, batchSlots, batchIsAccepted,
|
|
outputSequenceLengths, draftIds, idsPtrs, step, maxDraftTokens, endIds, finishedOutput);
|
|
sync_check_cuda_error();
|
|
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
|
|
}
|
|
} // namespace tensorrt_llm::kernels::speculative_decoding
|