mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Denis Kayshev <topenkoff@gmail.com> Co-authored-by: akhoroshev <arthoroshev@gmail.com> Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com> Update
182 lines
7.2 KiB
Python
182 lines
7.2 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
|
|
from .._common import default_net
|
|
from ..functional import Tensor, constant, dora_plugin, lora_plugin, where
|
|
from ..module import Module
|
|
|
|
|
|
class LoraRuntimeParams(object):
|
|
|
|
def __init__(
|
|
self,
|
|
lora_ranks: List[Tensor] = None,
|
|
lora_weights_pointers: List[Tensor] = None,
|
|
host_request_types: Tensor = None,
|
|
host_context_lengths: Tensor = None,
|
|
max_encoder_context_length: Tensor = None,
|
|
host_encoder_input_lengths: Tensor = None,
|
|
weight_index: int = 0,
|
|
partial_lora_mask: Tensor = None,
|
|
):
|
|
|
|
self.lora_ranks = lora_ranks
|
|
self.lora_weights_pointers = lora_weights_pointers
|
|
self.host_request_types = host_request_types
|
|
self.host_context_lengths = host_context_lengths
|
|
self.max_encoder_context_length = max_encoder_context_length
|
|
self.host_encoder_input_lengths = host_encoder_input_lengths
|
|
self.weight_index = weight_index
|
|
self.partial_lora_mask = partial_lora_mask # Partial LoRA for https://arxiv.org/abs/2401.16420
|
|
|
|
|
|
class Lora(Module):
|
|
|
|
def __init__(self,
|
|
in_hidden_size: int = 0,
|
|
out_hidden_sizes: List[int] = [0],
|
|
max_low_rank: int = 0) -> None:
|
|
super().__init__()
|
|
|
|
self.in_hidden_size = in_hidden_size
|
|
self.out_hidden_sizes = out_hidden_sizes
|
|
self.max_low_rank = max_low_rank
|
|
|
|
def forward(self,
|
|
x,
|
|
lora_runtime_params: LoraRuntimeParams = None,
|
|
is_cross_attention: bool = False):
|
|
if default_net().plugin_config.lora_plugin:
|
|
result = lora_plugin(
|
|
x,
|
|
in_hidden_size=self.in_hidden_size,
|
|
out_hidden_sizes=self.out_hidden_sizes,
|
|
host_request_types=lora_runtime_params.host_request_types,
|
|
transb=True,
|
|
# For cross attention, host_encoder_input_lengths should be used instead of host_context_lengths
|
|
host_context_lengths=lora_runtime_params.host_context_lengths
|
|
if not is_cross_attention else
|
|
lora_runtime_params.host_encoder_input_lengths,
|
|
max_low_rank=self.max_low_rank,
|
|
lora_ranks=lora_runtime_params.lora_ranks,
|
|
lora_weights_pointers=lora_runtime_params.lora_weights_pointers,
|
|
weight_index=lora_runtime_params.weight_index,
|
|
)
|
|
if lora_runtime_params.partial_lora_mask is not None:
|
|
zero_tensor = constant(np.array([0.0], dtype=np.float16))
|
|
if isinstance(result, List):
|
|
result = [
|
|
where(lora_runtime_params.partial_lora_mask, r,
|
|
zero_tensor) for r in result
|
|
]
|
|
elif isinstance(result, Tensor):
|
|
result = where(lora_runtime_params.partial_lora_mask,
|
|
result, zero_tensor)
|
|
else:
|
|
assert False
|
|
else:
|
|
assert False, "Not support lora without plugin"
|
|
|
|
return result
|
|
|
|
|
|
class Dora(Module):
|
|
|
|
def __init__(self, out_hidden_sizes: List[int] = [0]) -> None:
|
|
super().__init__()
|
|
self.out_hidden_sizes = out_hidden_sizes
|
|
|
|
def forward(self,
|
|
x,
|
|
lora_runtime_params: LoraRuntimeParams = None,
|
|
is_cross_attention: bool = False):
|
|
assert lora_runtime_params.weight_index == 0, "DoRA does not support weight_index != 0"
|
|
if default_net().plugin_config.lora_plugin and default_net(
|
|
).plugin_config.dora_plugin:
|
|
result = dora_plugin(
|
|
x,
|
|
out_hidden_sizes=self.out_hidden_sizes,
|
|
host_request_types=lora_runtime_params.host_request_types,
|
|
host_context_lengths=lora_runtime_params.host_context_lengths
|
|
if not is_cross_attention else
|
|
lora_runtime_params.host_encoder_input_lengths,
|
|
lora_weights_pointers=lora_runtime_params.lora_weights_pointers,
|
|
)
|
|
else:
|
|
assert False, "Not support dora without plugin"
|
|
|
|
return result
|
|
|
|
|
|
class LoraParams(object):
|
|
|
|
def __init__(
|
|
self,
|
|
lora_ranks=None, # : List[dict[Tensor]]
|
|
lora_weights_pointers=None, # : List[dict[Tensor]]
|
|
host_context_lengths: Tensor = None,
|
|
max_encoder_context_length: Tensor = None, # For cross attention
|
|
host_request_types: Tensor = None,
|
|
host_encoder_input_lengths: Tensor = None, # For cross attention
|
|
weight_index: int = 0,
|
|
partial_lora_mask: Tensor = None,
|
|
):
|
|
|
|
self.lora_ranks = lora_ranks
|
|
self.lora_weights_pointers = lora_weights_pointers
|
|
|
|
self.host_context_lengths = host_context_lengths
|
|
self.max_encoder_context_length = max_encoder_context_length
|
|
self.host_request_types = host_request_types
|
|
self.host_encoder_input_lengths = host_encoder_input_lengths
|
|
self.weight_index = weight_index
|
|
|
|
self.partial_lora_mask = partial_lora_mask # Partial LoRA for https://arxiv.org/abs/2401.16420
|
|
|
|
def get_layer_params(self, layer_idx: int):
|
|
return LoraParams(
|
|
lora_ranks=[self.lora_ranks[layer_idx]],
|
|
lora_weights_pointers=[self.lora_weights_pointers[layer_idx]],
|
|
host_context_lengths=self.host_context_lengths,
|
|
max_encoder_context_length=self.max_encoder_context_length,
|
|
host_request_types=self.host_request_types,
|
|
host_encoder_input_lengths=self.host_encoder_input_lengths,
|
|
weight_index=self.weight_index,
|
|
partial_lora_mask=self.partial_lora_mask)
|
|
|
|
def get_runtime_params(self, layer_idx: int, lora_module: str):
|
|
if f"{lora_module}_lora_ranks" in self.lora_ranks[layer_idx]:
|
|
return LoraRuntimeParams(
|
|
lora_ranks=[
|
|
self.lora_ranks[layer_idx][f"{lora_module}_lora_ranks"]
|
|
],
|
|
lora_weights_pointers=[
|
|
self.lora_weights_pointers[layer_idx]
|
|
[f"{lora_module}_lora_weights_pointers"]
|
|
],
|
|
host_context_lengths=self.host_context_lengths,
|
|
max_encoder_context_length=self.max_encoder_context_length,
|
|
host_request_types=self.host_request_types,
|
|
host_encoder_input_lengths=self.host_encoder_input_lengths,
|
|
weight_index=self.weight_index,
|
|
partial_lora_mask=self.partial_lora_mask,
|
|
)
|
|
else:
|
|
return None
|