mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Altair-Alpha <62340011+Altair-Alpha@users.noreply.github.com>
178 lines
8.0 KiB
Python
178 lines
8.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
import tensorrt_llm
|
|
import tensorrt_llm.models.redrafter
|
|
import tensorrt_llm.models.redrafter.redrafter_helper
|
|
from tensorrt_llm import Tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
|
|
from utils.util import create_session, run_session, set_input_shapes
|
|
|
|
|
|
class TestReDrafter(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('warning')
|
|
|
|
def test_validate(self):
|
|
bs = 2
|
|
nb = 3
|
|
bl = 4
|
|
V = 4
|
|
S = max(7, 9)
|
|
old_device = torch.get_default_device()
|
|
torch.set_default_device("cuda")
|
|
torch.manual_seed(0)
|
|
greedy_search = True
|
|
draft_probs = torch.rand((bs, nb, bl - 1, V), dtype=torch.float32)
|
|
draft_tokens = torch.tensor([[
|
|
[91, 92, 93, 95],
|
|
[91, 92, 94, 96],
|
|
[91, 92, 93, 97],
|
|
], [
|
|
[93, 94, 95, 92],
|
|
[93, 95, 96, 93],
|
|
[93, 94, 97, 96],
|
|
]],
|
|
dtype=torch.int32) % V
|
|
draft_tokens = torch.randint(10, size=(bs, nb, bl),
|
|
dtype=torch.int32) % V
|
|
draft_indices = torch.tensor([[
|
|
[0, 1, 2, 3],
|
|
[0, 1, 4, 5],
|
|
[0, 1, 2, 6],
|
|
], [
|
|
[0, 1, 2, 3],
|
|
[0, 4, 5, 6],
|
|
[0, 1, 7, 8],
|
|
]],
|
|
dtype=torch.int32) % S
|
|
draft_indices = torch.randint(10, size=(bs, nb, bl),
|
|
dtype=torch.int32) % S
|
|
flattened_logits = torch.rand((bs, S, V), dtype=torch.float32)
|
|
rand_data = torch.rand((bs, nb, bl - 1), dtype=torch.float32)
|
|
|
|
# ref outputs
|
|
ref_max = torch.tensor([0, 1], dtype=torch.int32)
|
|
ref_beam = torch.tensor([0, 0], dtype=torch.int32)
|
|
ref_probs = torch.tensor([[
|
|
[[-0., -50000., -50000., -50000.], [-0., -50000., -50000., -50000.],
|
|
[-50000., -50000., -0., -50000.]],
|
|
[[-50000., -0., -50000., -50000.], [-50000., -50000., -50000., -0.],
|
|
[-50000., -50000., -50000., -0.]],
|
|
[[-0., -50000., -50000., -50000.], [-50000., -50000., -0., -50000.],
|
|
[-50000., -0., -50000., -50000.]]
|
|
],
|
|
[[[-50000., -0., -50000., -50000.],
|
|
[-0., -50000., -50000., -50000.],
|
|
[-0., -50000., -50000., -50000.]],
|
|
[[-50000., -50000., -0., -50000.],
|
|
[-50000., -50000., -0., -50000.],
|
|
[-0., -50000., -50000., -50000.]],
|
|
[[-50000., -0., -50000., -50000.],
|
|
[-50000., -50000., -0., -50000.],
|
|
[-50000., -50000., -0., -50000.]]]],
|
|
dtype=torch.float32)
|
|
ref_last_probs = torch.tensor([[[-50000., -50000., -50000., -0.],
|
|
[-50000., -50000., -0., -50000.],
|
|
[-50000., -50000., -50000., -0.]],
|
|
[[-50000., -50000., -0., -50000.],
|
|
[-0., -50000., -50000., -50000.],
|
|
[-50000., -0., -50000., -50000.]]],
|
|
dtype=torch.float32)
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
network = builder.create_network()
|
|
with tensorrt_llm.net_guard(network):
|
|
draft_probs_t = Tensor(name='draft_probs',
|
|
shape=[-1] + list(draft_probs.shape[1:]),
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(
|
|
draft_probs.dtype))
|
|
draft_tokens_t = Tensor(name='draft_tokens',
|
|
shape=[-1] + list(draft_tokens.shape[1:]),
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(
|
|
draft_tokens.dtype))
|
|
draft_indices_t = Tensor(name='draft_indices',
|
|
shape=[-1] + list(draft_indices.shape[1:]),
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(
|
|
draft_indices.dtype))
|
|
flattened_logits_t = Tensor(
|
|
name='flattened_logits',
|
|
shape=[-1, -1] + list(flattened_logits.shape[2:]),
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(flattened_logits.dtype))
|
|
rand_data_t = Tensor(name='rand_data',
|
|
shape=[-1] + list(rand_data.shape[1:]),
|
|
dtype=tensorrt_llm.torch_dtype_to_trt(
|
|
rand_data.dtype))
|
|
|
|
outputs = tensorrt_llm.models.redrafter.redrafter_helper._validate_draft_tokens(
|
|
draft_probs_t, draft_tokens_t, draft_indices_t,
|
|
flattened_logits_t, nb, bl, greedy_search, rand_data_t)
|
|
outputs[0].mark_output('max_num_accept_tokens')
|
|
outputs[1].mark_output('beam_index')
|
|
outputs[2].mark_output('base_log_probs')
|
|
outputs[3].mark_output('last_base_log_probs')
|
|
|
|
# trt run
|
|
profile = builder.trt_builder.create_optimization_profile()
|
|
set_input_shapes(profile, draft_probs_t, [0, nb, bl - 1, V],
|
|
[16, nb, bl - 1, V], [32, nb, bl - 1, V])
|
|
set_input_shapes(profile, draft_indices_t, [0, nb, bl], [16, nb, bl],
|
|
[32, nb, bl])
|
|
set_input_shapes(profile, draft_tokens_t, [0, nb, bl], [16, nb, bl],
|
|
[32, nb, bl])
|
|
set_input_shapes(profile, rand_data_t, [0, nb, bl - 1],
|
|
[16, nb, bl - 1], [32, nb, bl - 1])
|
|
set_input_shapes(profile, flattened_logits_t, [1, 1, V], [16, 8, V],
|
|
[32, 16, V])
|
|
session = create_session(builder,
|
|
network,
|
|
precision='float32',
|
|
optimization_profiles=[profile])
|
|
inputs = {
|
|
'draft_probs': draft_probs,
|
|
'draft_tokens': draft_tokens,
|
|
'draft_indices': draft_indices,
|
|
'rand_data': rand_data,
|
|
'flattened_logits': flattened_logits,
|
|
}
|
|
outputs = run_session(session, inputs)
|
|
|
|
# compare diff
|
|
torch.testing.assert_close(ref_max,
|
|
outputs['max_num_accept_tokens'],
|
|
atol=0,
|
|
rtol=0)
|
|
torch.testing.assert_close(ref_beam,
|
|
outputs['beam_index'],
|
|
atol=0,
|
|
rtol=0)
|
|
torch.testing.assert_close(ref_probs,
|
|
outputs['base_log_probs'],
|
|
atol=0.01,
|
|
rtol=0.1)
|
|
torch.testing.assert_close(ref_last_probs,
|
|
outputs['last_base_log_probs'],
|
|
atol=0.01,
|
|
rtol=0.1)
|
|
torch.set_default_device(old_device)
|
|
return
|