TensorRT-LLMs/tests/model/redrafter/test_validate.py
Kaiyu Xie 2d234357c6
Update TensorRT-LLM (#1954)
* Update TensorRT-LLM

---------

Co-authored-by: Altair-Alpha <62340011+Altair-Alpha@users.noreply.github.com>
2024-07-16 15:30:25 +08:00

178 lines
8.0 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import unittest
import torch
import tensorrt_llm
import tensorrt_llm.models.redrafter
import tensorrt_llm.models.redrafter.redrafter_helper
from tensorrt_llm import Tensor
sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, os.pardir))
from utils.util import create_session, run_session, set_input_shapes
class TestReDrafter(unittest.TestCase):
def setUp(self):
tensorrt_llm.logger.set_level('warning')
def test_validate(self):
bs = 2
nb = 3
bl = 4
V = 4
S = max(7, 9)
old_device = torch.get_default_device()
torch.set_default_device("cuda")
torch.manual_seed(0)
greedy_search = True
draft_probs = torch.rand((bs, nb, bl - 1, V), dtype=torch.float32)
draft_tokens = torch.tensor([[
[91, 92, 93, 95],
[91, 92, 94, 96],
[91, 92, 93, 97],
], [
[93, 94, 95, 92],
[93, 95, 96, 93],
[93, 94, 97, 96],
]],
dtype=torch.int32) % V
draft_tokens = torch.randint(10, size=(bs, nb, bl),
dtype=torch.int32) % V
draft_indices = torch.tensor([[
[0, 1, 2, 3],
[0, 1, 4, 5],
[0, 1, 2, 6],
], [
[0, 1, 2, 3],
[0, 4, 5, 6],
[0, 1, 7, 8],
]],
dtype=torch.int32) % S
draft_indices = torch.randint(10, size=(bs, nb, bl),
dtype=torch.int32) % S
flattened_logits = torch.rand((bs, S, V), dtype=torch.float32)
rand_data = torch.rand((bs, nb, bl - 1), dtype=torch.float32)
# ref outputs
ref_max = torch.tensor([0, 1], dtype=torch.int32)
ref_beam = torch.tensor([0, 0], dtype=torch.int32)
ref_probs = torch.tensor([[
[[-0., -50000., -50000., -50000.], [-0., -50000., -50000., -50000.],
[-50000., -50000., -0., -50000.]],
[[-50000., -0., -50000., -50000.], [-50000., -50000., -50000., -0.],
[-50000., -50000., -50000., -0.]],
[[-0., -50000., -50000., -50000.], [-50000., -50000., -0., -50000.],
[-50000., -0., -50000., -50000.]]
],
[[[-50000., -0., -50000., -50000.],
[-0., -50000., -50000., -50000.],
[-0., -50000., -50000., -50000.]],
[[-50000., -50000., -0., -50000.],
[-50000., -50000., -0., -50000.],
[-0., -50000., -50000., -50000.]],
[[-50000., -0., -50000., -50000.],
[-50000., -50000., -0., -50000.],
[-50000., -50000., -0., -50000.]]]],
dtype=torch.float32)
ref_last_probs = torch.tensor([[[-50000., -50000., -50000., -0.],
[-50000., -50000., -0., -50000.],
[-50000., -50000., -50000., -0.]],
[[-50000., -50000., -0., -50000.],
[-0., -50000., -50000., -50000.],
[-50000., -0., -50000., -50000.]]],
dtype=torch.float32)
builder = tensorrt_llm.Builder()
network = builder.create_network()
with tensorrt_llm.net_guard(network):
draft_probs_t = Tensor(name='draft_probs',
shape=[-1] + list(draft_probs.shape[1:]),
dtype=tensorrt_llm.torch_dtype_to_trt(
draft_probs.dtype))
draft_tokens_t = Tensor(name='draft_tokens',
shape=[-1] + list(draft_tokens.shape[1:]),
dtype=tensorrt_llm.torch_dtype_to_trt(
draft_tokens.dtype))
draft_indices_t = Tensor(name='draft_indices',
shape=[-1] + list(draft_indices.shape[1:]),
dtype=tensorrt_llm.torch_dtype_to_trt(
draft_indices.dtype))
flattened_logits_t = Tensor(
name='flattened_logits',
shape=[-1, -1] + list(flattened_logits.shape[2:]),
dtype=tensorrt_llm.torch_dtype_to_trt(flattened_logits.dtype))
rand_data_t = Tensor(name='rand_data',
shape=[-1] + list(rand_data.shape[1:]),
dtype=tensorrt_llm.torch_dtype_to_trt(
rand_data.dtype))
outputs = tensorrt_llm.models.redrafter.redrafter_helper._validate_draft_tokens(
draft_probs_t, draft_tokens_t, draft_indices_t,
flattened_logits_t, nb, bl, greedy_search, rand_data_t)
outputs[0].mark_output('max_num_accept_tokens')
outputs[1].mark_output('beam_index')
outputs[2].mark_output('base_log_probs')
outputs[3].mark_output('last_base_log_probs')
# trt run
profile = builder.trt_builder.create_optimization_profile()
set_input_shapes(profile, draft_probs_t, [0, nb, bl - 1, V],
[16, nb, bl - 1, V], [32, nb, bl - 1, V])
set_input_shapes(profile, draft_indices_t, [0, nb, bl], [16, nb, bl],
[32, nb, bl])
set_input_shapes(profile, draft_tokens_t, [0, nb, bl], [16, nb, bl],
[32, nb, bl])
set_input_shapes(profile, rand_data_t, [0, nb, bl - 1],
[16, nb, bl - 1], [32, nb, bl - 1])
set_input_shapes(profile, flattened_logits_t, [1, 1, V], [16, 8, V],
[32, 16, V])
session = create_session(builder,
network,
precision='float32',
optimization_profiles=[profile])
inputs = {
'draft_probs': draft_probs,
'draft_tokens': draft_tokens,
'draft_indices': draft_indices,
'rand_data': rand_data,
'flattened_logits': flattened_logits,
}
outputs = run_session(session, inputs)
# compare diff
torch.testing.assert_close(ref_max,
outputs['max_num_accept_tokens'],
atol=0,
rtol=0)
torch.testing.assert_close(ref_beam,
outputs['beam_index'],
atol=0,
rtol=0)
torch.testing.assert_close(ref_probs,
outputs['base_log_probs'],
atol=0.01,
rtol=0.1)
torch.testing.assert_close(ref_last_probs,
outputs['last_base_log_probs'],
atol=0.01,
rtol=0.1)
torch.set_default_device(old_device)
return