mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Puneesh Khanna <puneesh.khanna@tii.ae> Co-authored-by: Ethan Zhang <26497102+ethnzhng@users.noreply.github.com>
610 lines
26 KiB
Python
610 lines
26 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import sys
|
|
import unittest
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from parameterized import parameterized
|
|
from transformers import FalconConfig, FalconForCausalLM
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Builder
|
|
from tensorrt_llm._utils import str_dtype_to_torch
|
|
from tensorrt_llm.bindings import KVCacheType
|
|
from tensorrt_llm.models.falcon.convert import load_weights_from_hf_model
|
|
from tensorrt_llm.network import net_guard
|
|
from tensorrt_llm.plugin.plugin import ContextFMHAType
|
|
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
|
|
from tensorrt_llm.runtime.generation import _prepare_attention_mask
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import unittest_name_func
|
|
|
|
|
|
class TestFalcon(unittest.TestCase):
|
|
|
|
HFModelConfig = FalconConfig
|
|
HFModel = FalconForCausalLM
|
|
|
|
query_types = ['MHA', 'MQA', 'GQA']
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
# Fix random seed for the reproducibility.
|
|
torch.random.manual_seed(1773)
|
|
|
|
def generate_hf_model(self,
|
|
output_len: int,
|
|
dtype: str,
|
|
query_type: str,
|
|
num_kv_heads: Optional[int] = None,
|
|
use_alibi: bool = True,
|
|
parallel_attention: bool = False,
|
|
num_ln_in_parallel_attn: int = 2,
|
|
new_decoder_architecture: bool = False):
|
|
if isinstance(dtype, str):
|
|
dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype)
|
|
assert query_type in self.query_types
|
|
num_heads = 4
|
|
multi_query = False
|
|
if query_type == 'MQA':
|
|
num_kv_heads = 1
|
|
multi_query = True
|
|
elif query_type == 'GQA':
|
|
num_kv_heads == num_heads // 2
|
|
else:
|
|
num_kv_heads = None # query_type = 'MHA'
|
|
|
|
config = self.HFModelConfig(
|
|
num_hidden_layers=2,
|
|
vocab_size=128,
|
|
hidden_size=128,
|
|
num_attention_heads=num_heads,
|
|
bias=True,
|
|
max_length=output_len,
|
|
torch_dtype=dtype,
|
|
alibi=use_alibi,
|
|
new_decoder_architecture=new_decoder_architecture,
|
|
multi_query=multi_query,
|
|
parallel_attn=parallel_attention,
|
|
num_ln_in_parallel_attn=num_ln_in_parallel_attn,
|
|
num_kv_heads=num_kv_heads,
|
|
pad_token_id=1,
|
|
eos_token_id=0,
|
|
)
|
|
model = FalconForCausalLM(config).cuda().to(dtype).eval()
|
|
return config, model
|
|
|
|
def initialize_network(self, network: tensorrt_llm.Network,
|
|
hf_model: HFModel, hf_config: HFModelConfig,
|
|
dtype: str, batch_size: int, beam_width: int,
|
|
input_len: int, output_len: int,
|
|
tensor_parallel: int, rank: int):
|
|
hf_config.max_position_embeddings = (input_len + output_len)
|
|
config = tensorrt_llm.models.FalconConfig.from_hugging_face(
|
|
hf_config,
|
|
dtype=dtype,
|
|
mapping={
|
|
'world_size': tensor_parallel,
|
|
'tp_size': tensor_parallel,
|
|
'rank': rank,
|
|
})
|
|
trtllm_model = tensorrt_llm.models.FalconForCausalLM(config)
|
|
weights = load_weights_from_hf_model(hf_model, config)
|
|
trtllm_model.load(weights)
|
|
|
|
with net_guard(network):
|
|
# Initialize model
|
|
network.set_named_parameters(trtllm_model.named_parameters())
|
|
inputs = trtllm_model.prepare_inputs(
|
|
max_batch_size=batch_size,
|
|
max_input_len=input_len,
|
|
max_seq_len=input_len + output_len,
|
|
max_num_tokens=batch_size * input_len,
|
|
use_cache=True,
|
|
max_beam_width=beam_width)
|
|
# Prepare
|
|
trtllm_model(**inputs)
|
|
|
|
def generate_trtllm_runtime(self,
|
|
model_name: str,
|
|
hf_config: HFModelConfig,
|
|
hf_model: HFModel,
|
|
dtype: str,
|
|
world_size: int = 1,
|
|
rank: int = 0,
|
|
batch_size: int = 4,
|
|
beam_width: int = 1,
|
|
input_len: int = 128,
|
|
output_len: int = 2,
|
|
use_refit=False,
|
|
use_gpt_attengion_plugin=False,
|
|
use_gemm_plugin=False,
|
|
enable_remove_input_padding=False,
|
|
context_fmha_type=ContextFMHAType.disabled,
|
|
log_level: str = 'error'):
|
|
tensorrt_llm.logger.set_level(log_level)
|
|
mapping = tensorrt_llm.Mapping(world_size, rank)
|
|
builder = Builder()
|
|
|
|
builder_config = builder.create_builder_config(
|
|
name=model_name,
|
|
precision=dtype,
|
|
timing_cache='model.cache',
|
|
tensor_parallel=world_size,
|
|
use_alibi=hf_config.alibi,
|
|
parallel_attention=hf_config.parallel_attn,
|
|
use_refit=use_refit,
|
|
strongly_typed=True,
|
|
)
|
|
|
|
network = builder.create_network()
|
|
network.plugin_config.to_legacy_setting()
|
|
if use_gpt_attengion_plugin:
|
|
network.plugin_config.gpt_attention_plugin = dtype
|
|
if use_gemm_plugin:
|
|
network.plugin_config.gemm_plugin = dtype
|
|
if enable_remove_input_padding:
|
|
network.plugin_config.remove_input_padding = True
|
|
if world_size > 1:
|
|
network.plugin_config.set_nccl_plugin(dtype)
|
|
network.plugin_config.set_context_fmha(context_fmha_type)
|
|
|
|
self.initialize_network(network=network,
|
|
hf_model=hf_model,
|
|
hf_config=hf_config,
|
|
dtype=dtype,
|
|
batch_size=batch_size,
|
|
beam_width=beam_width,
|
|
input_len=input_len,
|
|
output_len=output_len,
|
|
tensor_parallel=world_size,
|
|
rank=rank)
|
|
|
|
engine_buffer = builder.build_engine(network, builder_config)
|
|
runtime = tensorrt_llm.runtime.generation._Runtime(
|
|
engine_buffer, mapping)
|
|
|
|
ok = builder.save_timing_cache(builder_config, 'model.cache')
|
|
assert ok, "Failed to save timing cache."
|
|
|
|
return runtime, engine_buffer
|
|
|
|
def load_test_cases():
|
|
test_cases = [
|
|
# TC for Falcon-1B arch: MHA + ALiBi
|
|
('MHA', True, False, 1, False, False, False, True, False,
|
|
ContextFMHAType.disabled, 'float16'),
|
|
('MHA', True, False, 1, False, False, False, True, False,
|
|
ContextFMHAType.disabled, 'float32'),
|
|
# TC for Falcon-7B arch: MQA + RoPE + parallel_attention
|
|
('MQA', False, True, 1, False, False, True, True, False,
|
|
ContextFMHAType.disabled, 'float16'),
|
|
('MQA', False, True, 1, False, False, True, True, False,
|
|
ContextFMHAType.disabled, 'float32'),
|
|
# TC for Falcon-40B arch: GQA + RoPE + parallel_attention + new_decoder_architecture
|
|
('GQA', False, True, 2, True, False, True, True, False,
|
|
ContextFMHAType.disabled, 'float16'),
|
|
('GQA', False, True, 2, True, False, True, True, False,
|
|
ContextFMHAType.disabled, 'float32'),
|
|
# TC for Falcon2-11B arch: GQA + RoPE + parallel_attention (1 or 2 layernorm) + new_decoder_architecture
|
|
('GQA', False, True, 1, True, False, True, True, False,
|
|
ContextFMHAType.disabled, 'float32'),
|
|
('GQA', False, True, 2, True, False, True, True, False,
|
|
ContextFMHAType.disabled, 'float32')
|
|
]
|
|
return test_cases
|
|
|
|
@staticmethod
|
|
def convert_to_left_padding(token_ids, pad_id):
|
|
converted = token_ids.clone()
|
|
for i, tokens in enumerate(token_ids):
|
|
assert pad_id is not None
|
|
vals, cnts = tokens.unique_consecutive(return_counts=True)
|
|
# Check if the last consecutive elements are pad tokens.
|
|
if vals[-1] == pad_id:
|
|
converted[i, :] = tokens.roll(cnts[-1].item())
|
|
return converted
|
|
|
|
@staticmethod
|
|
def prepare_input_token_ids(batch_size,
|
|
input_len,
|
|
vocab_size,
|
|
pad_id=None,
|
|
remove_input_padding=False,
|
|
device=None):
|
|
input_ids = torch.randint(vocab_size, (batch_size, input_len),
|
|
dtype=torch.int32,
|
|
device=device)
|
|
context_lengths = input_ids.new_full((batch_size, ), input_len)
|
|
if pad_id is not None:
|
|
for i in range(1, batch_size):
|
|
input_ids[i, -i:] = pad_id
|
|
context_lengths[i] = input_len - i
|
|
last_token_ids = context_lengths.clone()
|
|
if remove_input_padding:
|
|
last_token_ids = torch.cumsum(last_token_ids, dim=0)
|
|
return input_ids, context_lengths, last_token_ids
|
|
|
|
def skip_test_case(self, query_type, use_alibi, parallel_attention,
|
|
new_decoder_architecture, use_refit,
|
|
use_gpt_attengion_plugin, use_gemm_plugin,
|
|
remove_input_padding, context_fmha_type, dtype):
|
|
# Skip unsupported cases.
|
|
if use_alibi and use_gpt_attengion_plugin:
|
|
self.skipTest('ALiBi needs use_gpt_attengion_plugin = False')
|
|
if not use_alibi and not use_gpt_attengion_plugin:
|
|
self.skipTest('RoPE needs use_gpt_attengion_plugin = True')
|
|
|
|
@parameterized.expand(load_test_cases(), name_func=unittest_name_func)
|
|
def test_falcon(self, query_type, use_alibi, parallel_attention,
|
|
num_ln_in_parallel_attn, new_decoder_architecture,
|
|
use_refit, use_gpt_attengion_plugin, use_gemm_plugin,
|
|
remove_input_padding, context_fmha_type, dtype):
|
|
self.skip_test_case(query_type, use_alibi, parallel_attention,
|
|
new_decoder_architecture, use_refit,
|
|
use_gpt_attengion_plugin, use_gemm_plugin,
|
|
remove_input_padding, context_fmha_type, dtype)
|
|
world_size = 1
|
|
rank = 0
|
|
batch_size = 3
|
|
beam_width = 1
|
|
input_len = 7
|
|
output_len = 2
|
|
total_length = input_len + output_len
|
|
log_level = 'error'
|
|
|
|
hf_config, hf_model = self.generate_hf_model(
|
|
output_len,
|
|
dtype,
|
|
use_alibi=use_alibi,
|
|
parallel_attention=parallel_attention,
|
|
num_ln_in_parallel_attn=num_ln_in_parallel_attn,
|
|
new_decoder_architecture=new_decoder_architecture,
|
|
query_type=query_type)
|
|
runtime, _ = self.generate_trtllm_runtime(
|
|
model_name='falcon',
|
|
hf_config=hf_config,
|
|
hf_model=hf_model,
|
|
dtype=dtype,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
batch_size=batch_size,
|
|
beam_width=beam_width,
|
|
input_len=input_len,
|
|
output_len=output_len,
|
|
use_refit=use_refit,
|
|
use_gpt_attengion_plugin=use_gpt_attengion_plugin,
|
|
use_gemm_plugin=use_gemm_plugin,
|
|
enable_remove_input_padding=remove_input_padding,
|
|
context_fmha_type=context_fmha_type,
|
|
log_level=log_level)
|
|
|
|
head_dim = hf_config.hidden_size // hf_config.num_attention_heads
|
|
num_kv_heads = hf_config.num_kv_heads
|
|
kv_dtype = dtype
|
|
device = hf_model.device
|
|
pad_id = hf_config.pad_token_id
|
|
num_layers = hf_config.num_hidden_layers
|
|
|
|
# 1. Check the correctness of context computation.
|
|
|
|
# Prepare context inputs.
|
|
ctx_input_ids, ctx_context_lengths, ctx_last_token_ids = \
|
|
self.prepare_input_token_ids(
|
|
batch_size, input_len,
|
|
vocab_size=hf_config.vocab_size,
|
|
# Skip testing padded inputs due to bugs in HF Falcon.
|
|
# Will enable when those are fixed.
|
|
pad_id=None,
|
|
remove_input_padding=remove_input_padding,
|
|
device=device)
|
|
ctx_position_ids = torch.arange(0,
|
|
input_len,
|
|
dtype=torch.int32,
|
|
device=device).expand([batch_size, -1])
|
|
ctx_attention_mask = _prepare_attention_mask(ctx_input_ids, pad_id)
|
|
ctx_host_request_types = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
|
|
# ping-pong buffers
|
|
cache_indirections = [
|
|
torch.zeros((batch_size, beam_width, total_length),
|
|
dtype=torch.int32,
|
|
device=device),
|
|
torch.zeros((batch_size, beam_width, total_length),
|
|
dtype=torch.int32,
|
|
device=device)
|
|
]
|
|
|
|
# We need sequence_lengths start as context_lengths for step 0 (context),
|
|
# and it will be added one after each step.
|
|
sequence_length = ctx_context_lengths.detach().clone()
|
|
# past kv length: (length, is_context)
|
|
host_past_key_value_lengths = torch.tensor([0] * batch_size,
|
|
dtype=torch.int32)
|
|
host_max_attention_window_sizes = torch.tensor([total_length] *
|
|
num_layers,
|
|
dtype=torch.int32)
|
|
host_sink_token_length = torch.tensor([0], dtype=torch.int32)
|
|
|
|
perf_knob_tensor_size = 16
|
|
context_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
|
|
ctx_buffer = {
|
|
'input_ids': ctx_input_ids.contiguous(),
|
|
'position_ids': ctx_position_ids.contiguous(),
|
|
'context_lengths': ctx_context_lengths.contiguous(),
|
|
'last_token_ids': ctx_last_token_ids.contiguous(),
|
|
'attention_mask': ctx_attention_mask.contiguous(),
|
|
'host_request_types': ctx_host_request_types.contiguous(),
|
|
'cache_indirection': cache_indirections[0],
|
|
'sequence_length': sequence_length.contiguous(),
|
|
'host_past_key_value_lengths':
|
|
host_past_key_value_lengths.contiguous(),
|
|
'host_sink_token_length': host_sink_token_length,
|
|
'host_runtime_perf_knobs': context_runtime_perf_knobs,
|
|
}
|
|
if remove_input_padding:
|
|
ctx_buffer['host_context_lengths'] = ctx_context_lengths.cpu()
|
|
ctx_shape = {k: v.shape for k, v in ctx_buffer.items()}
|
|
|
|
if use_gpt_attengion_plugin:
|
|
kv_shape = (batch_size, 2, num_kv_heads, total_length, head_dim)
|
|
past_kv_shape = kv_shape
|
|
present_kv_shape = kv_shape
|
|
else:
|
|
past_kv_shape = (batch_size, 2, num_kv_heads, 0, head_dim)
|
|
present_kv_shape = (batch_size, 2, num_kv_heads, input_len,
|
|
head_dim)
|
|
ctx_shape[f'host_max_attention_window_sizes'] = (num_layers, )
|
|
ctx_buffer[
|
|
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
|
|
for i in range(num_layers):
|
|
ctx_shape[f'past_key_value_{i}'] = past_kv_shape
|
|
ctx_buffer[f'present_key_value_{i}'] = torch.zeros(
|
|
present_kv_shape,
|
|
dtype=str_dtype_to_torch(kv_dtype),
|
|
device=device)
|
|
if use_gpt_attengion_plugin:
|
|
ctx_buffer[f'past_key_value_{i}'] = ctx_buffer[
|
|
f'present_key_value_{i}']
|
|
else:
|
|
ctx_buffer[f'past_key_value_{i}'] = torch.zeros(
|
|
(1, ), dtype=str_dtype_to_torch(kv_dtype), device=device)
|
|
|
|
context = runtime.ctx_context
|
|
runtime._set_shape(context, ctx_shape)
|
|
runtime._set_buffer(context, ctx_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = ctx_buffer['logits'].float()
|
|
|
|
with torch.no_grad():
|
|
# A decoder-only model of HF requires left padding.
|
|
hf_ctx_input_ids = self.convert_to_left_padding(
|
|
ctx_input_ids, pad_id)
|
|
hf_ctx_attn_mask = _prepare_attention_mask(hf_ctx_input_ids,
|
|
pad_id=pad_id)
|
|
hf_outputs = hf_model.forward(hf_ctx_input_ids,
|
|
attention_mask=hf_ctx_attn_mask)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :].float()
|
|
|
|
# Compare logits.
|
|
torch.testing.assert_close(ref, res, atol=1e-2, rtol=1e-1)
|
|
|
|
# 2. Check the correctness of generation step.
|
|
|
|
gen_id = torch.randint(100, (batch_size, 1)).int().to(device)
|
|
gen_context_lengths = ctx_context_lengths.clone()
|
|
gen_host_request_types = torch.tensor([1] * batch_size,
|
|
dtype=torch.int32)
|
|
gen_position_ids = torch.full_like(gen_id, input_len)
|
|
if remove_input_padding:
|
|
gen_last_token_ids = torch.arange(1,
|
|
1 + batch_size).int().to(device)
|
|
else:
|
|
gen_last_token_ids = torch.zeros_like(gen_context_lengths)
|
|
gen_attention_mask = torch.cat([
|
|
ctx_attention_mask,
|
|
ctx_attention_mask.new_ones((ctx_attention_mask.shape[0], 1))
|
|
],
|
|
dim=-1)
|
|
|
|
# past kv length: sequence_length of last step
|
|
host_past_key_value_lengths = sequence_length.cpu()
|
|
|
|
# For step 1, the sequence_lengths = context_lengths + 1.
|
|
sequence_length = torch.add(sequence_length, 1)
|
|
|
|
gen_runtime_perf_knobs = torch.tensor([-1] * perf_knob_tensor_size,
|
|
dtype=torch.int64)
|
|
|
|
step1_buffer = {
|
|
'input_ids': gen_id,
|
|
'context_lengths': gen_context_lengths.contiguous(),
|
|
'position_ids': gen_position_ids.contiguous(),
|
|
'last_token_ids': gen_last_token_ids.contiguous(),
|
|
'attention_mask': gen_attention_mask.contiguous(),
|
|
'host_request_types': gen_host_request_types.contiguous(),
|
|
'cache_indirection': cache_indirections[1],
|
|
'sequence_length': sequence_length.contiguous(),
|
|
'host_past_key_value_lengths':
|
|
host_past_key_value_lengths.contiguous(),
|
|
'host_sink_token_length': host_sink_token_length,
|
|
'host_runtime_perf_knobs': gen_runtime_perf_knobs,
|
|
}
|
|
if remove_input_padding:
|
|
step1_buffer['host_context_lengths'] = gen_context_lengths.cpu()
|
|
if use_gpt_attengion_plugin:
|
|
step1_buffer[
|
|
f'host_max_attention_window_sizes'] = host_max_attention_window_sizes
|
|
for i in range(hf_config.num_hidden_layers):
|
|
kv_cache = ctx_buffer[f'present_key_value_{i}']
|
|
step1_buffer[f'past_key_value_{i}'] = kv_cache
|
|
if use_gpt_attengion_plugin:
|
|
# gpt_attention_plugin shares past/present cache.
|
|
step1_buffer[f'present_key_value_{i}'] = kv_cache
|
|
step1_shape = {k: v.shape for k, v in step1_buffer.items()}
|
|
|
|
context = runtime.context_1
|
|
runtime._set_shape(context, step1_shape)
|
|
runtime._set_buffer(context, step1_buffer)
|
|
runtime._run(context)
|
|
torch.cuda.synchronize()
|
|
res = step1_buffer['logits'].float()
|
|
|
|
with torch.no_grad():
|
|
hf_gen_attn_mask = torch.cat([
|
|
hf_ctx_attn_mask,
|
|
hf_ctx_attn_mask.new_ones((hf_ctx_attn_mask.shape[0], 1))
|
|
],
|
|
dim=-1)
|
|
hf_outputs = hf_model.forward(
|
|
gen_id,
|
|
attention_mask=hf_gen_attn_mask,
|
|
past_key_values=hf_outputs.past_key_values,
|
|
use_cache=True)
|
|
torch.cuda.synchronize()
|
|
ref = hf_outputs.logits[:, -1, :].float()
|
|
|
|
torch.testing.assert_close(ref, res, atol=1e-2, rtol=1e-1)
|
|
|
|
@parameterized.expand(load_test_cases(), name_func=unittest_name_func)
|
|
def test_greedy_search(self, query_type, use_alibi, parallel_attention,
|
|
num_ln_in_parallel_attn, new_decoder_architecture,
|
|
use_refit, use_gpt_attengion_plugin, use_gemm_plugin,
|
|
remove_input_padding, context_fmha_type, dtype):
|
|
|
|
self.skip_test_case(query_type, use_alibi, parallel_attention,
|
|
new_decoder_architecture, use_refit,
|
|
use_gpt_attengion_plugin, use_gemm_plugin,
|
|
remove_input_padding, context_fmha_type, dtype)
|
|
|
|
model_name = 'falcon'
|
|
world_size = 1
|
|
rank = 0
|
|
batch_size = 3
|
|
beam_width = 1
|
|
input_len = 7
|
|
output_len = 4
|
|
log_level = 'error'
|
|
|
|
hf_config, hf_model = self.generate_hf_model(
|
|
output_len=output_len,
|
|
dtype=dtype,
|
|
query_type=query_type,
|
|
use_alibi=use_alibi,
|
|
parallel_attention=parallel_attention,
|
|
num_ln_in_parallel_attn=num_ln_in_parallel_attn,
|
|
new_decoder_architecture=new_decoder_architecture)
|
|
_, engine_buffer = self.generate_trtllm_runtime(
|
|
model_name=model_name,
|
|
hf_config=hf_config,
|
|
hf_model=hf_model,
|
|
dtype=dtype,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
batch_size=batch_size,
|
|
beam_width=beam_width,
|
|
input_len=input_len,
|
|
output_len=output_len,
|
|
use_refit=use_refit,
|
|
use_gpt_attengion_plugin=use_gpt_attengion_plugin,
|
|
use_gemm_plugin=use_gemm_plugin,
|
|
enable_remove_input_padding=remove_input_padding,
|
|
context_fmha_type=context_fmha_type,
|
|
log_level=log_level)
|
|
device = hf_model.device
|
|
|
|
model_config = ModelConfig(
|
|
max_batch_size=batch_size,
|
|
max_beam_width=beam_width,
|
|
model_name=model_name,
|
|
vocab_size=hf_config.vocab_size,
|
|
kv_cache_type=KVCacheType.CONTINUOUS,
|
|
num_layers=hf_config.num_hidden_layers,
|
|
num_heads=hf_config.num_attention_heads,
|
|
num_kv_heads=hf_config.num_kv_heads,
|
|
hidden_size=hf_config.hidden_size,
|
|
gpt_attention_plugin=use_gpt_attengion_plugin,
|
|
dtype=dtype)
|
|
|
|
sampling_config = SamplingConfig(end_id=hf_config.eos_token_id,
|
|
pad_id=hf_config.pad_token_id,
|
|
num_beams=1,
|
|
temperature=1.0,
|
|
top_k=1,
|
|
top_p=0.0,
|
|
length_penalty=1.0,
|
|
repetition_penalty=1.0)
|
|
|
|
mapping = tensorrt_llm.Mapping(world_size, rank, tp_size=world_size)
|
|
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
|
|
engine_buffer,
|
|
mapping,
|
|
debug_mode=True)
|
|
|
|
input_ids, context_lengths, _ = self.prepare_input_token_ids(
|
|
batch_size,
|
|
input_len,
|
|
vocab_size=hf_config.vocab_size,
|
|
# Skip testing padded inputs due to bugs in HF Falcon.
|
|
# Will enable when those are fixed.
|
|
pad_id=None,
|
|
remove_input_padding=remove_input_padding,
|
|
device=device)
|
|
|
|
decoder.setup(batch_size,
|
|
max_context_length=input_len,
|
|
max_new_tokens=output_len)
|
|
|
|
output_ids = decoder.decode(input_ids, context_lengths, sampling_config)
|
|
# TODO: change to actual ragged tensor after the plugin supports it
|
|
output_ids_x = decoder.decode(input_ids, context_lengths,
|
|
sampling_config)
|
|
torch.cuda.synchronize()
|
|
torch.testing.assert_close(output_ids, output_ids_x)
|
|
|
|
# Convert to left padding to match with HF's padding policy.
|
|
res = self.convert_to_left_padding(output_ids[:, 0, :],
|
|
sampling_config.end_id)
|
|
|
|
ref_output_ids = hf_model.generate(
|
|
self.convert_to_left_padding(input_ids, sampling_config.pad_id),
|
|
do_sample=False,
|
|
early_stopping=False,
|
|
num_beams=sampling_config.num_beams,
|
|
temperature=sampling_config.temperature,
|
|
top_k=sampling_config.top_k,
|
|
top_p=sampling_config.top_p,
|
|
max_new_tokens=output_len,
|
|
length_penalty=sampling_config.length_penalty,
|
|
repetition_penalty=sampling_config.repetition_penalty,
|
|
pad_token_id=sampling_config.pad_id,
|
|
eos_token_id=sampling_config.end_id)
|
|
torch.cuda.synchronize()
|
|
ref = ref_output_ids.int()
|
|
|
|
torch.testing.assert_close(res[:, -output_len:], ref[:, -output_len:])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|