TensorRT-LLMs/tensorrt_llm/models/gemma/utils/sampler.py
2024-12-16 21:50:47 -08:00

192 lines
6.7 KiB
Python

# Copyright 2024 DeepMind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Sampler for Gemma transformer.
An example of a sampling class for a Gemma model.
"""
import chex
import jax
import jax.numpy as jnp
import sentencepiece as spm
from . import modules
from . import params as params_lib
from . import transformer as transformer_lib
def _compute_attention_masks(time_step: jax.Array, seq_len: int,
input_mask: jax.Array) -> jax.Array:
"""Computes causal attention mask."""
bsz = input_mask.shape[0]
batch_time_step = jnp.full((bsz, 1), time_step, dtype=jnp.uint32)
causal_padding = jnp.greater(jnp.expand_dims(jnp.arange(seq_len), 0),
batch_time_step)
causal_padding = causal_padding * jnp.expand_dims(input_mask, axis=-1)
attention_mask = (
causal_padding[:, jnp.newaxis, jnp.newaxis, :].astype(jnp.float32) *
modules.K_MASK)
attention_mask = jnp.squeeze(attention_mask, axis=1)
return attention_mask
@chex.dataclass
class _SamplingState:
# Number of tokens in the prompt.
num_input_tokens: jnp.int32 # [B]
# Fixed-size buffer for accumulating the output tokens.
token_buffer: jnp.ndarray # [B, L]
# Model state for conditioning the model on autoregressively.
cache: dict[str, modules.LayerCache]
class Sampler:
"""Sampler for Gemma transformer."""
def __init__(
self,
transformer_config: transformer_lib.TransformerConfig,
vocab: spm.SentencePieceProcessor,
params: params_lib.Params,
cache_size: int,
buffer_size: int,
max_decode_steps: int,
):
self.transformer = transformer_lib.Transformer(
config=transformer_config)
self.vocab = vocab
self.params = params
self.cache_size = cache_size
self.buffer_size = buffer_size
self.max_decode_steps = max_decode_steps
self._compiled_sample_fn = jax.jit(self._sample_fn)
def _sample_step(self, params, time_step,
sampler_state: _SamplingState) -> _SamplingState:
"""Performs a single sampling step."""
time_step = jnp.asarray(time_step, dtype=jnp.int32)
last_token = sampler_state.token_buffer[:, time_step]
input_mask = last_token != self.vocab.pad_id()
attention_mask = _compute_attention_masks(
time_step, self.cache_size, input_mask).astype(jnp.float32)
logits, cache = self.transformer.apply(
{'params': params},
last_token,
time_step,
sampler_state.cache,
attention_mask,
time_step,
)
next_token_candidate = jnp.argmax(logits, axis=-1) # [B, 1]
next_token_candidate = next_token_candidate[:, 0] # [B,]
next_token_candidate = jnp.where(
time_step < sampler_state.num_input_tokens - 1,
sampler_state.token_buffer[:, time_step + 1],
next_token_candidate,
)
token_buffer = sampler_state.token_buffer.at[:, time_step + 1].set(
next_token_candidate)
return _SamplingState(
num_input_tokens=sampler_state.num_input_tokens,
token_buffer=token_buffer,
cache=cache,
)
def init_cache(self, bsz) -> dict[str, modules.LayerCache]:
"""Initializes the attention cache for each layer."""
return {
f'layer_{i}':
modules.init_layer_cache(
self.cache_size,
self.transformer.config.num_heads,
self.transformer.config.head_dim,
bsz,
)
for i in range(self.transformer.config.num_layers)
}
def init_sample_state(self,
all_input_ids: list[jax.Array]) -> _SamplingState:
"""Initializes the sampling state given input prompts."""
bsz = len(all_input_ids)
num_input_tokens = [len(input_ids) for input_ids in all_input_ids]
token_buffer = jnp.full(
(
bsz,
self.buffer_size,
),
self.vocab.pad_id(),
dtype=jnp.int32,
)
for i, (input_ids,
num_tokens) in enumerate(zip(all_input_ids, num_input_tokens)):
token_buffer = token_buffer.at[i, :num_tokens].set(input_ids)
return _SamplingState(
num_input_tokens=jnp.array(num_input_tokens, dtype=jnp.int32),
token_buffer=token_buffer,
cache=self.init_cache(bsz),
)
def tokenize(self, input_string: str) -> jax.Array:
"""Tokenizes the input string."""
input_ids = self.vocab.EncodeAsIds(input_string)
input_ids = jnp.array([self.vocab.bos_id()] +
jnp.array(input_ids).tolist(),
dtype=jnp.int32)
return input_ids
def _sample_fn(
self,
params: params_lib.Params,
initial_sampling_state: _SamplingState,
) -> _SamplingState:
def sample_with_params(time_step: int, sampler_state: _SamplingState):
return self._sample_step(params, time_step, sampler_state)
return jax.lax.fori_loop(0, self.max_decode_steps, sample_with_params,
initial_sampling_state)
def __call__(self, input_strings: list[str] | str) -> list[str]:
"""Samples a completion of the input string."""
if isinstance(input_strings, str):
input_strings = [input_strings]
all_input_ids = [self.tokenize(x) for x in input_strings]
initial_sampling_state = self.init_sample_state(all_input_ids)
sampling_state = self._compiled_sample_fn(self.params,
initial_sampling_state)
out_tokens = [
buffer[num_tokens:num_tokens + self.max_decode_steps]
for buffer, num_tokens in zip(sampling_state.token_buffer,
sampling_state.num_input_tokens)
]
decoded_outputs = [
self.vocab.DecodeIds(out_tokens.tolist())
for out_tokens in out_tokens
]
return decoded_outputs