mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
192 lines
6.7 KiB
Python
192 lines
6.7 KiB
Python
# Copyright 2024 DeepMind Technologies Limited.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""Sampler for Gemma transformer.
|
|
|
|
An example of a sampling class for a Gemma model.
|
|
"""
|
|
|
|
import chex
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import sentencepiece as spm
|
|
|
|
from . import modules
|
|
from . import params as params_lib
|
|
from . import transformer as transformer_lib
|
|
|
|
|
|
def _compute_attention_masks(time_step: jax.Array, seq_len: int,
|
|
input_mask: jax.Array) -> jax.Array:
|
|
"""Computes causal attention mask."""
|
|
bsz = input_mask.shape[0]
|
|
batch_time_step = jnp.full((bsz, 1), time_step, dtype=jnp.uint32)
|
|
causal_padding = jnp.greater(jnp.expand_dims(jnp.arange(seq_len), 0),
|
|
batch_time_step)
|
|
causal_padding = causal_padding * jnp.expand_dims(input_mask, axis=-1)
|
|
attention_mask = (
|
|
causal_padding[:, jnp.newaxis, jnp.newaxis, :].astype(jnp.float32) *
|
|
modules.K_MASK)
|
|
attention_mask = jnp.squeeze(attention_mask, axis=1)
|
|
return attention_mask
|
|
|
|
|
|
@chex.dataclass
|
|
class _SamplingState:
|
|
|
|
# Number of tokens in the prompt.
|
|
num_input_tokens: jnp.int32 # [B]
|
|
|
|
# Fixed-size buffer for accumulating the output tokens.
|
|
token_buffer: jnp.ndarray # [B, L]
|
|
|
|
# Model state for conditioning the model on autoregressively.
|
|
cache: dict[str, modules.LayerCache]
|
|
|
|
|
|
class Sampler:
|
|
"""Sampler for Gemma transformer."""
|
|
|
|
def __init__(
|
|
self,
|
|
transformer_config: transformer_lib.TransformerConfig,
|
|
vocab: spm.SentencePieceProcessor,
|
|
params: params_lib.Params,
|
|
cache_size: int,
|
|
buffer_size: int,
|
|
max_decode_steps: int,
|
|
):
|
|
self.transformer = transformer_lib.Transformer(
|
|
config=transformer_config)
|
|
self.vocab = vocab
|
|
self.params = params
|
|
self.cache_size = cache_size
|
|
self.buffer_size = buffer_size
|
|
self.max_decode_steps = max_decode_steps
|
|
self._compiled_sample_fn = jax.jit(self._sample_fn)
|
|
|
|
def _sample_step(self, params, time_step,
|
|
sampler_state: _SamplingState) -> _SamplingState:
|
|
"""Performs a single sampling step."""
|
|
time_step = jnp.asarray(time_step, dtype=jnp.int32)
|
|
last_token = sampler_state.token_buffer[:, time_step]
|
|
input_mask = last_token != self.vocab.pad_id()
|
|
attention_mask = _compute_attention_masks(
|
|
time_step, self.cache_size, input_mask).astype(jnp.float32)
|
|
|
|
logits, cache = self.transformer.apply(
|
|
{'params': params},
|
|
last_token,
|
|
time_step,
|
|
sampler_state.cache,
|
|
attention_mask,
|
|
time_step,
|
|
)
|
|
|
|
next_token_candidate = jnp.argmax(logits, axis=-1) # [B, 1]
|
|
next_token_candidate = next_token_candidate[:, 0] # [B,]
|
|
|
|
next_token_candidate = jnp.where(
|
|
time_step < sampler_state.num_input_tokens - 1,
|
|
sampler_state.token_buffer[:, time_step + 1],
|
|
next_token_candidate,
|
|
)
|
|
|
|
token_buffer = sampler_state.token_buffer.at[:, time_step + 1].set(
|
|
next_token_candidate)
|
|
|
|
return _SamplingState(
|
|
num_input_tokens=sampler_state.num_input_tokens,
|
|
token_buffer=token_buffer,
|
|
cache=cache,
|
|
)
|
|
|
|
def init_cache(self, bsz) -> dict[str, modules.LayerCache]:
|
|
"""Initializes the attention cache for each layer."""
|
|
return {
|
|
f'layer_{i}':
|
|
modules.init_layer_cache(
|
|
self.cache_size,
|
|
self.transformer.config.num_heads,
|
|
self.transformer.config.head_dim,
|
|
bsz,
|
|
)
|
|
for i in range(self.transformer.config.num_layers)
|
|
}
|
|
|
|
def init_sample_state(self,
|
|
all_input_ids: list[jax.Array]) -> _SamplingState:
|
|
"""Initializes the sampling state given input prompts."""
|
|
bsz = len(all_input_ids)
|
|
num_input_tokens = [len(input_ids) for input_ids in all_input_ids]
|
|
|
|
token_buffer = jnp.full(
|
|
(
|
|
bsz,
|
|
self.buffer_size,
|
|
),
|
|
self.vocab.pad_id(),
|
|
dtype=jnp.int32,
|
|
)
|
|
for i, (input_ids,
|
|
num_tokens) in enumerate(zip(all_input_ids, num_input_tokens)):
|
|
token_buffer = token_buffer.at[i, :num_tokens].set(input_ids)
|
|
|
|
return _SamplingState(
|
|
num_input_tokens=jnp.array(num_input_tokens, dtype=jnp.int32),
|
|
token_buffer=token_buffer,
|
|
cache=self.init_cache(bsz),
|
|
)
|
|
|
|
def tokenize(self, input_string: str) -> jax.Array:
|
|
"""Tokenizes the input string."""
|
|
input_ids = self.vocab.EncodeAsIds(input_string)
|
|
input_ids = jnp.array([self.vocab.bos_id()] +
|
|
jnp.array(input_ids).tolist(),
|
|
dtype=jnp.int32)
|
|
return input_ids
|
|
|
|
def _sample_fn(
|
|
self,
|
|
params: params_lib.Params,
|
|
initial_sampling_state: _SamplingState,
|
|
) -> _SamplingState:
|
|
|
|
def sample_with_params(time_step: int, sampler_state: _SamplingState):
|
|
return self._sample_step(params, time_step, sampler_state)
|
|
|
|
return jax.lax.fori_loop(0, self.max_decode_steps, sample_with_params,
|
|
initial_sampling_state)
|
|
|
|
def __call__(self, input_strings: list[str] | str) -> list[str]:
|
|
"""Samples a completion of the input string."""
|
|
if isinstance(input_strings, str):
|
|
input_strings = [input_strings]
|
|
all_input_ids = [self.tokenize(x) for x in input_strings]
|
|
initial_sampling_state = self.init_sample_state(all_input_ids)
|
|
|
|
sampling_state = self._compiled_sample_fn(self.params,
|
|
initial_sampling_state)
|
|
|
|
out_tokens = [
|
|
buffer[num_tokens:num_tokens + self.max_decode_steps]
|
|
for buffer, num_tokens in zip(sampling_state.token_buffer,
|
|
sampling_state.num_input_tokens)
|
|
]
|
|
decoded_outputs = [
|
|
self.vocab.DecodeIds(out_tokens.tolist())
|
|
for out_tokens in out_tokens
|
|
]
|
|
return decoded_outputs
|