mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
387 lines
12 KiB
C++
387 lines
12 KiB
C++
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#include "TritonFlashAttentionPlugin.h"
|
|
|
|
// Import a generated header to use generated triton kernels.
|
|
extern "C"
|
|
{
|
|
#include "aot/fmha_kernel_fp16.h"
|
|
#include "aot/fmha_kernel_fp32.h"
|
|
}
|
|
|
|
#include <cstring>
|
|
#include <cuda_fp16.h>
|
|
#include <iostream>
|
|
#include <string>
|
|
|
|
using namespace nvinfer1;
|
|
using openai_triton::plugin::TritonFlashAttentionPluginCreator;
|
|
using openai_triton::plugin::TritonFlashAttentionPlugin;
|
|
|
|
static char const* TRITON_FLASH_ATTENTION_PLUGIN_VERSION{"1"};
|
|
static char const* TRITON_FLASH_ATTENTION_PLUGIN_NAME{"TritonFlashAttention"};
|
|
PluginFieldCollection TritonFlashAttentionPluginCreator::mFC{};
|
|
std::vector<PluginField> TritonFlashAttentionPluginCreator::mPluginAttributes;
|
|
|
|
namespace openai_triton::plugin
|
|
{
|
|
|
|
// Write values into buffer
|
|
template <typename T>
|
|
void writeArg(char*& buffer, T const& val)
|
|
{
|
|
std::memcpy(buffer, &val, sizeof(T));
|
|
buffer += sizeof(T);
|
|
}
|
|
|
|
// Read values from buffer
|
|
template <typename T>
|
|
void readArg(char const*& buffer, T& val)
|
|
{
|
|
std::memcpy(&val, buffer, sizeof(T));
|
|
buffer += sizeof(T);
|
|
}
|
|
|
|
std::uintptr_t constexpr kCudaMemAlign = 128;
|
|
|
|
int8_t* nextWorkspacePtr(int8_t* ptr, uintptr_t previousWorkspaceSize)
|
|
{
|
|
uintptr_t addr = (uintptr_t) ptr;
|
|
addr += previousWorkspaceSize;
|
|
if (addr % kCudaMemAlign)
|
|
{
|
|
addr += kCudaMemAlign - addr % kCudaMemAlign;
|
|
}
|
|
return (int8_t*) addr;
|
|
}
|
|
|
|
TritonFlashAttentionPlugin::TritonFlashAttentionPlugin(
|
|
int numHeads, int headSize, float softmaxScale, nvinfer1::DataType type)
|
|
: mNumHeads(numHeads)
|
|
, mHeadSize(headSize)
|
|
, mSoftmaxScale(softmaxScale)
|
|
, mType(type)
|
|
{
|
|
}
|
|
|
|
// Parameterized constructor
|
|
TritonFlashAttentionPlugin::TritonFlashAttentionPlugin(void const* data, size_t length)
|
|
{
|
|
char const *d = reinterpret_cast<char const*>(data), *a = d;
|
|
readArg(d, mNumHeads);
|
|
readArg(d, mHeadSize);
|
|
readArg(d, mSoftmaxScale);
|
|
readArg(d, mType);
|
|
TLLM_CHECK(d == a + length);
|
|
}
|
|
|
|
// IPluginV2DynamicExt Methods
|
|
nvinfer1::IPluginV2DynamicExt* TritonFlashAttentionPlugin::clone() const noexcept
|
|
{
|
|
auto* plugin = new TritonFlashAttentionPlugin(*this);
|
|
plugin->setPluginNamespace(mNamespace.c_str());
|
|
return plugin;
|
|
}
|
|
|
|
nvinfer1::DimsExprs TritonFlashAttentionPlugin::getOutputDimensions(
|
|
int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept
|
|
{
|
|
// Output shape.
|
|
// output tensor [batchSize, seqLen, mNumHeads, head_size]
|
|
assert(outputIndex == 0);
|
|
return inputs[outputIndex];
|
|
}
|
|
|
|
bool TritonFlashAttentionPlugin::supportsFormatCombination(
|
|
int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept
|
|
{
|
|
// In this example, inputs: Q, K, V, outputs: Out
|
|
assert(nbInputs + nbOutputs == 4);
|
|
assert(0 <= pos && pos < nbInputs + nbOutputs);
|
|
|
|
bool is_valid = false;
|
|
if (0 <= pos && pos < 3) // Q, K, V
|
|
{
|
|
is_valid = inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
|
|
}
|
|
else if (pos == nbInputs) // Out
|
|
{
|
|
is_valid = inOut[pos].type == mType && inOut[pos].format == TensorFormat::kLINEAR;
|
|
}
|
|
return is_valid;
|
|
}
|
|
|
|
void TritonFlashAttentionPlugin::configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs,
|
|
nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept
|
|
{
|
|
}
|
|
|
|
size_t TritonFlashAttentionPlugin::getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs,
|
|
nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept
|
|
{
|
|
// Set workspace size if needed. In this example, we need for L and m buffers.
|
|
auto const Q = inputs[0];
|
|
int const batchSize = Q.dims.d[0];
|
|
int const seqLen = Q.dims.d[2];
|
|
int const numBuffers = 2;
|
|
size_t workspaces[numBuffers];
|
|
workspaces[0] = sizeof(float) * batchSize * mNumHeads * seqLen;
|
|
workspaces[1] = sizeof(float) * batchSize * mNumHeads * seqLen;
|
|
|
|
size_t total = 0;
|
|
for (int i = 0; i < numBuffers; i++)
|
|
{
|
|
total += workspaces[i];
|
|
if (workspaces[i] % kCudaMemAlign)
|
|
{
|
|
total += kCudaMemAlign - (workspaces[i] % kCudaMemAlign);
|
|
}
|
|
}
|
|
return total;
|
|
}
|
|
|
|
template <typename T>
|
|
int TritonFlashAttentionPlugin::enqueueImpl(nvinfer1::PluginTensorDesc const* inputDesc,
|
|
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream)
|
|
{
|
|
assert(inputDesc[0].dims.d[1] == mNumHeads && inputDesc[0].dims.d[3] == mHeadSize);
|
|
assert(inputDesc[1].dims.d[1] == mNumHeads && inputDesc[1].dims.d[3] == mHeadSize);
|
|
assert(inputDesc[2].dims.d[1] == mNumHeads && inputDesc[2].dims.d[3] == mHeadSize);
|
|
|
|
int batchSize = inputDesc[0].dims.d[0];
|
|
int seqLen = inputDesc[0].dims.d[2];
|
|
|
|
T* Out = reinterpret_cast<T*>(outputs[0]);
|
|
|
|
const size_t bufSize = sizeof(float) * batchSize * mNumHeads * seqLen;
|
|
float* L = reinterpret_cast<float*>(workspace);
|
|
float* M = reinterpret_cast<float*>(nextWorkspacePtr(reinterpret_cast<int8_t*>(L), bufSize));
|
|
|
|
T const* Q = reinterpret_cast<T const*>(inputs[0]);
|
|
T const* K = reinterpret_cast<T const*>(inputs[1]);
|
|
T const* V = reinterpret_cast<T const*>(inputs[2]);
|
|
|
|
// Launch a cuda kernel generated by Triton AoT.
|
|
int res = 0;
|
|
if (std::is_same<T, float>::value)
|
|
{
|
|
res = fmha_d64_fp32_default(stream, reinterpret_cast<CUdeviceptr>(Out), reinterpret_cast<CUdeviceptr>(L),
|
|
reinterpret_cast<CUdeviceptr>(M), reinterpret_cast<CUdeviceptr>(Q), reinterpret_cast<CUdeviceptr>(K),
|
|
reinterpret_cast<CUdeviceptr>(V), mSoftmaxScale, batchSize, mNumHeads, seqLen);
|
|
}
|
|
else
|
|
{
|
|
res = fmha_d64_fp16_default(stream, reinterpret_cast<CUdeviceptr>(Out), reinterpret_cast<CUdeviceptr>(L),
|
|
reinterpret_cast<CUdeviceptr>(M), reinterpret_cast<CUdeviceptr>(Q), reinterpret_cast<CUdeviceptr>(K),
|
|
reinterpret_cast<CUdeviceptr>(V), mSoftmaxScale, batchSize, mNumHeads, seqLen);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int TritonFlashAttentionPlugin::enqueue(nvinfer1::PluginTensorDesc const* inputDesc,
|
|
nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace,
|
|
cudaStream_t stream) noexcept
|
|
{
|
|
int res = 1;
|
|
if (mType == DataType::kHALF)
|
|
{
|
|
res = enqueueImpl<half>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
|
|
}
|
|
else if (mType == DataType::kFLOAT)
|
|
{
|
|
res = enqueueImpl<float>(inputDesc, outputDesc, inputs, outputs, workspace, stream);
|
|
}
|
|
sync_check_cuda_error();
|
|
return res;
|
|
}
|
|
|
|
// IPluginV2Ext Methods
|
|
nvinfer1::DataType TritonFlashAttentionPlugin::getOutputDataType(
|
|
int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept
|
|
{
|
|
assert(index == 0);
|
|
return inputTypes[0];
|
|
}
|
|
|
|
// IPluginV2 Methods
|
|
|
|
char const* TritonFlashAttentionPlugin::getPluginType() const noexcept
|
|
{
|
|
return TRITON_FLASH_ATTENTION_PLUGIN_NAME;
|
|
}
|
|
|
|
char const* TritonFlashAttentionPlugin::getPluginVersion() const noexcept
|
|
{
|
|
return TRITON_FLASH_ATTENTION_PLUGIN_VERSION;
|
|
}
|
|
|
|
int TritonFlashAttentionPlugin::getNbOutputs() const noexcept
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int TritonFlashAttentionPlugin::initialize() noexcept
|
|
{
|
|
// Load kernels generated by Triton AoT.
|
|
load_fmha_d64_fp32();
|
|
load_fmha_d64_fp16();
|
|
return 0;
|
|
}
|
|
|
|
void TritonFlashAttentionPlugin::terminate() noexcept
|
|
{
|
|
// Unload kernels generated by Triton AoT.
|
|
unload_fmha_d64_fp32();
|
|
unload_fmha_d64_fp16();
|
|
}
|
|
|
|
size_t TritonFlashAttentionPlugin::getSerializationSize() const noexcept
|
|
{
|
|
return sizeof(mNumHeads) + sizeof(mHeadSize) + sizeof(mSoftmaxScale) + sizeof(mType);
|
|
}
|
|
|
|
void TritonFlashAttentionPlugin::serialize(void* buffer) const noexcept
|
|
{
|
|
char *d = static_cast<char*>(buffer), *a = d;
|
|
writeArg(d, mNumHeads);
|
|
writeArg(d, mHeadSize);
|
|
writeArg(d, mSoftmaxScale);
|
|
writeArg(d, mType);
|
|
TLLM_CHECK(d == a + getSerializationSize());
|
|
}
|
|
|
|
void TritonFlashAttentionPlugin::destroy() noexcept
|
|
{
|
|
// This gets called when the network containing plugin is destroyed
|
|
delete this;
|
|
}
|
|
|
|
void TritonFlashAttentionPlugin::setPluginNamespace(char const* libNamespace) noexcept
|
|
{
|
|
mNamespace = libNamespace;
|
|
}
|
|
|
|
char const* TritonFlashAttentionPlugin::getPluginNamespace() const noexcept
|
|
{
|
|
return mNamespace.c_str();
|
|
}
|
|
|
|
///////////////
|
|
|
|
TritonFlashAttentionPluginCreator::TritonFlashAttentionPluginCreator()
|
|
{
|
|
// Fill PluginFieldCollection with PluginField arguments metadata
|
|
mPluginAttributes.clear();
|
|
mPluginAttributes.emplace_back(PluginField("num_heads", nullptr, PluginFieldType::kINT32));
|
|
mPluginAttributes.emplace_back(PluginField("head_size", nullptr, PluginFieldType::kINT32));
|
|
mPluginAttributes.emplace_back(PluginField("softmax_scale", nullptr, PluginFieldType::kFLOAT32));
|
|
mPluginAttributes.emplace_back(PluginField("type_id", nullptr, PluginFieldType::kINT32));
|
|
mFC.nbFields = mPluginAttributes.size();
|
|
mFC.fields = mPluginAttributes.data();
|
|
}
|
|
|
|
char const* TritonFlashAttentionPluginCreator::getPluginName() const noexcept
|
|
{
|
|
return TRITON_FLASH_ATTENTION_PLUGIN_NAME;
|
|
}
|
|
|
|
char const* TritonFlashAttentionPluginCreator::getPluginVersion() const noexcept
|
|
{
|
|
return TRITON_FLASH_ATTENTION_PLUGIN_VERSION;
|
|
}
|
|
|
|
PluginFieldCollection const* TritonFlashAttentionPluginCreator::getFieldNames() noexcept
|
|
{
|
|
return &mFC;
|
|
}
|
|
|
|
IPluginV2* TritonFlashAttentionPluginCreator::createPlugin(char const* name, PluginFieldCollection const* fc) noexcept
|
|
{
|
|
PluginField const* fields = fc->fields;
|
|
int numHeads = 0;
|
|
int headSize = 0;
|
|
float softmaxScale = 1.0f;
|
|
nvinfer1::DataType type;
|
|
// Read configurations from each fields
|
|
for (int i = 0; i < fc->nbFields; ++i)
|
|
{
|
|
char const* attrName = fields[i].name;
|
|
if (!strcmp(attrName, "num_heads"))
|
|
{
|
|
assert(fields[i].type == PluginFieldType::kINT32);
|
|
numHeads = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
|
|
}
|
|
else if (!strcmp(attrName, "head_size"))
|
|
{
|
|
assert(fields[i].type == PluginFieldType::kINT32);
|
|
headSize = static_cast<int>(*(static_cast<int const*>(fields[i].data)));
|
|
}
|
|
else if (!strcmp(attrName, "softmax_scale"))
|
|
{
|
|
assert(fields[i].type == PluginFieldType::kFLOAT32);
|
|
softmaxScale = static_cast<float>(*(static_cast<float const*>(fields[i].data)));
|
|
}
|
|
else if (!strcmp(attrName, "type_id"))
|
|
{
|
|
assert(fields[i].type == PluginFieldType::kINT32);
|
|
type = static_cast<nvinfer1::DataType>(*(static_cast<nvinfer1::DataType const*>(fields[i].data)));
|
|
}
|
|
}
|
|
try
|
|
{
|
|
auto* obj = new TritonFlashAttentionPlugin(numHeads, headSize, softmaxScale, type);
|
|
obj->setPluginNamespace(mNamespace.c_str());
|
|
return obj;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
std::cerr << "Caught exception: " << e.what() << std::endl;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
IPluginV2* TritonFlashAttentionPluginCreator::deserializePlugin(
|
|
char const* name, void const* serialData, size_t serialLength) noexcept
|
|
{
|
|
// This object will be deleted when the network is destroyed, which will
|
|
// call TritonFlashAttentionPlugin::destroy()
|
|
try
|
|
{
|
|
auto* obj = new TritonFlashAttentionPlugin(serialData, serialLength);
|
|
obj->setPluginNamespace(mNamespace.c_str());
|
|
return obj;
|
|
}
|
|
catch (std::exception const& e)
|
|
{
|
|
std::cerr << "Caught exception: " << e.what() << std::endl;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void TritonFlashAttentionPluginCreator::setPluginNamespace(char const* libNamespace) noexcept
|
|
{
|
|
mNamespace = libNamespace;
|
|
}
|
|
|
|
char const* TritonFlashAttentionPluginCreator::getPluginNamespace() const noexcept
|
|
{
|
|
return mNamespace.c_str();
|
|
}
|
|
|
|
} // namespace openai_triton::plugin
|