TensorRT-LLMs/examples/pytorch
Enwei Zhu c28b90984f
[TRTLLM-3925, https://nvbugs/5245262] [fix] Normalize LLM.generate API (#3985)
* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

* fix

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>

---------

Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com>
2025-05-07 11:06:23 +08:00
..
out_of_tree_example refactor: remove ParallelConfig in tensorrt_llm._torch.distributed module (#3370) 2025-04-11 15:34:20 -07:00
quickstart_advanced.py feat: add relaxed acceptance for DS (#3865) 2025-05-01 21:50:36 +08:00
quickstart_lora.py add passing E2E LoRA flow (#3788) 2025-04-23 18:38:06 +03:00
quickstart_multimodal.py fix: [nvbug/5252057] Fix kv cache reuse on PyTorch multimodal (#4025) 2025-05-02 10:53:06 -07:00
quickstart.py chore: Simplify quickstart of PyTorch flow (#3000) 2025-03-24 14:32:17 +08:00
README.md feat: llama4 input processor (#3383) 2025-04-25 16:47:14 -07:00
star_attention.py [TRTLLM-3925, https://nvbugs/5245262] [fix] Normalize LLM.generate API (#3985) 2025-05-07 11:06:23 +08:00

TRT-LLM with PyTorch

Run the quick start script:

python3 quickstart.py

Run the advanced usage example script:

# BF16
python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct

# FP8
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8

# BF16 + TP=2
python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct --tp_size 2

# FP8 + TP=2
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --tp_size 2

# FP8(e4m3) kvcache
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --kv_cache_dtype fp8

# BF16 + TP=8
python3 quickstart_advanced.py --model_dir nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 --tp_size 8

# Nemotron-H requires disabling cache reuse in kv cache
python3 quickstart_advanced.py --model_dir nvidia/Nemotron-H-8B-Base-8K --disable_kv_cache_reuse --max_batch_size 8

Run the multimodal example script:

```bash
# default inputs
python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --modality image [--use_cuda_graph]

# user inputs
# supported modes:
# (1) N prompt, N media (N requests are in-flight batched)
# (2) 1 prompt, N media
# Note: media should be either image or video. Mixing image and video is not supported.
python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --modality video --prompt "Tell me what you see in the video briefly." "Describe the scene in the video briefly." --media "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/OAI-sora-tokyo-walk.mp4" "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/world.mp4" --max_tokens 128 [--use_cuda_graph]

Supported Models

Architecture Model HuggingFace Example Modality
BertForSequenceClassification BERT-based textattack/bert-base-uncased-yelp-polarity L
DeepseekV3ForCausalLM DeepSeek-V3 deepseek-ai/DeepSeek-V3 L
LlavaLlamaModel VILA Efficient-Large-Model/NVILA-8B L + V
LlavaNextForConditionalGeneration LLaVA-NeXT llava-hf/llava-v1.6-mistral-7b-hf L + V
LlamaForCausalLM Llama 3.1, Llama 3, Llama 2, LLaMA meta-llama/Meta-Llama-3.1-70B L
Llama4ForConditionalGeneration Llama 4 Scout/Maverick meta-llama/Llama-4-Scout-17B-16E-Instruct, meta-llama/Llama-4-Maverick-17B-128E-Instruct L + V
MistralForCausalLM Mistral mistralai/Mistral-7B-v0.1 L
MixtralForCausalLM Mixtral mistralai/Mixtral-8x7B-v0.1 L
MllamaForConditionalGeneration Llama 3.2 meta-llama/Llama-3.2-11B-Vision L
NemotronForCausalLM Nemotron-3, Nemotron-4, Minitron nvidia/Minitron-8B-Base L
NemotronHForCausalLM Nemotron-H nvidia/Nemotron-H-8B-Base-8K
nvidia/Nemotron-H-47B-Base-8K
nvidia/Nemotron-H-56B-Base-8K
L
NemotronNASForCausalLM LLamaNemotron nvidia/Llama-3_1-Nemotron-51B-Instruct L
NemotronNASForCausalLM LlamaNemotron Super nvidia/Llama-3_3-Nemotron-Super-49B-v1 L
NemotronNASForCausalLM LlamaNemotron Ultra nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 L
Qwen2ForCausalLM QwQ, Qwen2 Qwen/Qwen2-7B-Instruct L
Qwen2ForProcessRewardModel Qwen2-based Qwen/Qwen2.5-Math-PRM-7B L
Qwen2ForRewardModel Qwen2-based Qwen/Qwen2.5-Math-RM-72B L
Qwen2VLForConditionalGeneration Qwen2-VL Qwen/Qwen2-VL-7B-Instruct L + V
Qwen2_5_VLForConditionalGeneration Qwen2.5-VL Qwen/Qwen2.5-VL-7B-Instruct L + V

Note:

  • L: Language only
  • L + V: Language and Vision multimodal support
  • Llama 3.2 accepts vision input, but our support currently limited to text only.