mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* fix Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> * fix Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> --------- Signed-off-by: Enwei Zhu <21126786+syuoni@users.noreply.github.com> |
||
|---|---|---|
| .. | ||
| out_of_tree_example | ||
| quickstart_advanced.py | ||
| quickstart_lora.py | ||
| quickstart_multimodal.py | ||
| quickstart.py | ||
| README.md | ||
| star_attention.py | ||
TRT-LLM with PyTorch
Run the quick start script:
python3 quickstart.py
Run the advanced usage example script:
# BF16
python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct
# FP8
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8
# BF16 + TP=2
python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct --tp_size 2
# FP8 + TP=2
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --tp_size 2
# FP8(e4m3) kvcache
python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --kv_cache_dtype fp8
# BF16 + TP=8
python3 quickstart_advanced.py --model_dir nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 --tp_size 8
# Nemotron-H requires disabling cache reuse in kv cache
python3 quickstart_advanced.py --model_dir nvidia/Nemotron-H-8B-Base-8K --disable_kv_cache_reuse --max_batch_size 8
Run the multimodal example script:
```bash
# default inputs
python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --modality image [--use_cuda_graph]
# user inputs
# supported modes:
# (1) N prompt, N media (N requests are in-flight batched)
# (2) 1 prompt, N media
# Note: media should be either image or video. Mixing image and video is not supported.
python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --modality video --prompt "Tell me what you see in the video briefly." "Describe the scene in the video briefly." --media "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/OAI-sora-tokyo-walk.mp4" "https://huggingface.co/datasets/Efficient-Large-Model/VILA-inference-demos/resolve/main/world.mp4" --max_tokens 128 [--use_cuda_graph]
Supported Models
| Architecture | Model | HuggingFace Example | Modality |
|---|---|---|---|
BertForSequenceClassification |
BERT-based | textattack/bert-base-uncased-yelp-polarity |
L |
DeepseekV3ForCausalLM |
DeepSeek-V3 | deepseek-ai/DeepSeek-V3 |
L |
LlavaLlamaModel |
VILA | Efficient-Large-Model/NVILA-8B |
L + V |
LlavaNextForConditionalGeneration |
LLaVA-NeXT | llava-hf/llava-v1.6-mistral-7b-hf |
L + V |
LlamaForCausalLM |
Llama 3.1, Llama 3, Llama 2, LLaMA | meta-llama/Meta-Llama-3.1-70B |
L |
Llama4ForConditionalGeneration |
Llama 4 Scout/Maverick | meta-llama/Llama-4-Scout-17B-16E-Instruct, meta-llama/Llama-4-Maverick-17B-128E-Instruct |
L + V |
MistralForCausalLM |
Mistral | mistralai/Mistral-7B-v0.1 |
L |
MixtralForCausalLM |
Mixtral | mistralai/Mixtral-8x7B-v0.1 |
L |
MllamaForConditionalGeneration |
Llama 3.2 | meta-llama/Llama-3.2-11B-Vision |
L |
NemotronForCausalLM |
Nemotron-3, Nemotron-4, Minitron | nvidia/Minitron-8B-Base |
L |
NemotronHForCausalLM |
Nemotron-H | nvidia/Nemotron-H-8B-Base-8K nvidia/Nemotron-H-47B-Base-8K nvidia/Nemotron-H-56B-Base-8K |
L |
NemotronNASForCausalLM |
LLamaNemotron | nvidia/Llama-3_1-Nemotron-51B-Instruct |
L |
NemotronNASForCausalLM |
LlamaNemotron Super | nvidia/Llama-3_3-Nemotron-Super-49B-v1 |
L |
NemotronNASForCausalLM |
LlamaNemotron Ultra | nvidia/Llama-3_1-Nemotron-Ultra-253B-v1 |
L |
Qwen2ForCausalLM |
QwQ, Qwen2 | Qwen/Qwen2-7B-Instruct |
L |
Qwen2ForProcessRewardModel |
Qwen2-based | Qwen/Qwen2.5-Math-PRM-7B |
L |
Qwen2ForRewardModel |
Qwen2-based | Qwen/Qwen2.5-Math-RM-72B |
L |
Qwen2VLForConditionalGeneration |
Qwen2-VL | Qwen/Qwen2-VL-7B-Instruct |
L + V |
Qwen2_5_VLForConditionalGeneration |
Qwen2.5-VL | Qwen/Qwen2.5-VL-7B-Instruct |
L + V |
Note:
- L: Language only
- L + V: Language and Vision multimodal support
- Llama 3.2 accepts vision input, but our support currently limited to text only.