TensorRT-LLMs/cpp/tensorrt_llm/pybind/batch_manager/bindings.cpp
Robin Kobus 1bd84c6d8c
feat: Allow individual gatherContext for each additional output (#3374)
* refactor: Update ExecutorConfig to use AdditionalModelOutput type

- Changed function signatures and member variables across multiple files to replace std::optional<std::vector<std::string>> with std::optional<std::vector<executor::AdditionalModelOutput>> to include gatherContext flag for each additional output.
- Updated related serialization and deserialization methods to accommodate the new type.
- Adjusted tests to reflect the changes in the output handling structure.

This refactor enhances the flexibility and maintainability of the output configuration in the executor and batch manager components.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Remove equality operator from TrtGptModelOptionalParams

- Deleted the operator== implementation from TrtGptModelOptionalParams to simplify the class.
- Updated the pybind11 bindings to remove the exposure of the equality operator to Python.

This change streamlines the class definition and reduces unnecessary complexity in the bindings.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Enhance copyAdditionalOutputs to utilize AdditionalModelOutput

- Updated the copyAdditionalOutputs function to accept a vector of AdditionalModelOutput, allowing for the inclusion of the gatherContext flag.
- Adjusted the logic to handle context and non-context outputs separately, improving the output handling mechanism.
- Modified related unit tests to incorporate the new gatherContext parameter, ensuring comprehensive testing of the updated functionality.

This refactor improves the flexibility and clarity of output management in the batch processing workflow.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Introduce findOutputTensor utility function for output tensor retrieval

- Added a new utility function, findOutputTensor, to encapsulate the logic for finding output tensors and checking their validity.
- Refactored copyAdditionalOutputs to utilize findOutputTensor, reducing code duplication and improving clarity.
- Enhanced error checking for additional context and generation output tensors.

This change streamlines the output tensor retrieval process, enhancing maintainability and readability in the batch processing workflow.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* refactor: Check final indices of additional output tensors and update tests

- Added checks to verify the final indices of additional output tensors for context and generation outputs.
- Updated unit tests to verify the changes.
  - Add lastTokenIds input tensor to test engines.
  - Logits output depends on gatherContextLogits parameter.
- Removed gatherContextOutputs parameter from the validate method in LlmRequest.
  - Context outputs do not depend on computeContextLogits parameter.

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* fixup! refactor: Check final indices of additional output tensors and update tests

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* fixup! refactor: Update ExecutorConfig to use AdditionalModelOutput type

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* fixup! refactor: Remove equality operator from TrtGptModelOptionalParams

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* docs: Update executor.md

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

* chore: Clean up includes

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>

---------

Signed-off-by: Robin Kobus <19427718+Funatiq@users.noreply.github.com>
2025-04-12 17:00:36 +08:00

506 lines
30 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bindings.h"
#include "tensorrt_llm/batch_manager/common.h"
#include "tensorrt_llm/batch_manager/decoderBuffers.h"
#include "tensorrt_llm/batch_manager/medusaBuffers.h"
#include "tensorrt_llm/batch_manager/microBatchScheduler.h"
#include "tensorrt_llm/batch_manager/peftCacheManager.h"
#include "tensorrt_llm/batch_manager/rnnStateManager.h"
#include "tensorrt_llm/batch_manager/runtimeBuffers.h"
#include "tensorrt_llm/batch_manager/sequenceSlotManager.h"
#include "tensorrt_llm/pybind/common/bindTypes.h"
#include "tensorrt_llm/runtime/torch.h"
#include "tensorrt_llm/runtime/torchView.h"
#include <ATen/ATen.h>
#include <pybind11/chrono.h>
#include <pybind11/functional.h>
#include <pybind11/operators.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include <torch/extension.h>
namespace py = pybind11;
namespace tb = tensorrt_llm::batch_manager;
namespace tle = tensorrt_llm::executor;
namespace tr = tensorrt_llm::runtime;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm::pybind::batch_manager
{
void initBindings(pybind11::module_& m)
{
using GenLlmReq = tb::GenericLlmRequest<runtime::ITensor::SharedPtr>;
// Create and register exceptions in module scope
static PyObject* peft_exc = PyErr_NewException(
"tensorrt_llm.bindings.internal.batch_manager.PeftTaskNotCachedException", nullptr, nullptr);
static PyObject* lora_exc
= PyErr_NewException("tensorrt_llm.bindings.internal.batch_manager.LoraCacheFullException", nullptr, nullptr);
m.add_object("PeftTaskNotCachedException", py::handle(peft_exc));
m.add_object("LoraCacheFullException", py::handle(lora_exc));
// Register with no captures
py::register_exception_translator(
[](std::exception_ptr p)
{
try
{
if (p)
std::rethrow_exception(p);
}
catch (const tb::PeftTaskNotCachedException& e)
{
PyErr_SetString(peft_exc, e.what());
}
catch (const tr::LoraCacheFullException& e)
{
PyErr_SetString(lora_exc, e.what());
}
});
PybindUtils::bindSet<tb::ReqIdsSet>(m, "ReqIdsSet");
py::enum_<tb::LlmRequestType>(m, "LlmRequestType")
.value("LLMREQUEST_TYPE_CONTEXT_AND_GENERATION", tb::LLMREQUEST_TYPE_CONTEXT_AND_GENERATION)
.value("LLMREQUEST_TYPE_CONTEXT_ONLY", tb::LLMREQUEST_TYPE_CONTEXT_ONLY)
.value("LLMREQUEST_TYPE_GENERATION_ONLY", tb::LLMREQUEST_TYPE_GENERATION_ONLY)
.export_values();
py::class_<tb::batch_scheduler::ContextChunkingConfig>(m, "ContextChunkingConfig")
.def(py::init<tle::ContextChunkingPolicy, tensorrt_llm::runtime::SizeType32>(), py::arg("chunking_policy"),
py::arg("chunk_unit_size"))
.def_readwrite("chunking_policy", &tb::batch_scheduler::ContextChunkingConfig::chunkingPolicy)
.def_readwrite("chunk_unit_size", &tb::batch_scheduler::ContextChunkingConfig::chunkUnitSize);
py::classh<GenLlmReq>(m, "GenericLlmRequest")
.def("set_exclude_input_from_output", &GenLlmReq::setExcludeInputFromOutput, py::arg("exclude"))
.def("get_num_tokens", &GenLlmReq::getNumTokens, py::arg("beam"))
.def_property_readonly("max_beam_num_tokens", &GenLlmReq::getMaxBeamNumTokens)
.def("get_token", &GenLlmReq::getToken, py::arg("beam"), py::arg("pos"))
.def("get_tokens", py::overload_cast<GenLlmReq::SizeType32>(&GenLlmReq::getTokens, py::const_), py::arg("beam"))
.def("get_tokens", py::overload_cast<>(&GenLlmReq::getTokens, py::const_))
.def("get_last_tokens", py::overload_cast<GenLlmReq::SizeType32>(&GenLlmReq::getLastTokens), py::arg("beam"))
.def("get_last_tokens", py::overload_cast<>(&GenLlmReq::getLastTokens))
.def_property_readonly("max_num_generated_tokens", &GenLlmReq::getMaxNumGeneratedTokens)
.def("add_new_token", &GenLlmReq::addNewToken, py::arg("token"), py::arg("beam"))
.def("add_new_tokens", &GenLlmReq::addNewTokens, py::arg("beam_tokens"))
.def_property_readonly("num_draft_tokens", &GenLlmReq::getNumDraftTokens)
.def("set_generated_tokens", &GenLlmReq::setGeneratedTokens, py::arg("generated_beam_tokens"))
.def("pause", &GenLlmReq::pause, py::arg("max_input_len"))
.def_property("max_sent_token_len", &GenLlmReq::getMaxSentTokenLen, &GenLlmReq::setMaxSentTokenLen)
.def("prompt_embedding_table",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getPromptEmbeddingTable();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
})
.def("get_mrope_rotary_cos_sin",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getMropeRotaryCosSin();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
})
.def("bad_words_list",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getBadWordsList();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
})
.def_property(
"draft_logits",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getDraftLogits();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
},
[](GenLlmReq& self, at::Tensor& logits)
{ self.setDraftLogits(std::make_optional<GenLlmReq::TensorPtr>(tr::TorchView::of(logits))); })
.def("embedding_bias",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getEmbeddingBias();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
})
.def_property(
"lora_config",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getLoraConfig();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
},
[](GenLlmReq& self, at::Tensor& loraConfig)
{ self.setLoraConfig(static_cast<GenLlmReq::TensorPtr>(tr::TorchView::of(loraConfig))); })
.def_property(
"lora_weights",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getLoraWeights();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
},
[](GenLlmReq& self, at::Tensor& loraWeights)
{ self.setLoraWeights(static_cast<GenLlmReq::TensorPtr>(tr::TorchView::of(loraWeights))); })
.def("stop_words_list",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
auto tensor = self.getStopWordsList();
if (tensor)
{
value = tr::Torch::tensor(*tensor);
}
return value;
})
.def_property_readonly("prompt_vocab_size", &GenLlmReq::getPromptVocabSize)
.def_property_readonly("mrope_position_deltas", &GenLlmReq::getMropePositionDeltas)
.def_property_readonly("lora_task_id", &GenLlmReq::getLoraTaskId)
.def_property_readonly("lookahead_config", &GenLlmReq::getLookaheadConfig)
.def_property("context_chunk_size", &GenLlmReq::getContextChunkSize, &GenLlmReq::setContextChunkSize)
.def_property("decoding_iter", &GenLlmReq::getDecodingIter, &GenLlmReq::setDecodingIter)
.def_readwrite("request_id", &GenLlmReq::mRequestId)
.def_readwrite("prompt_len", &GenLlmReq::mPromptLen)
.def_readwrite("max_new_tokens", &GenLlmReq::mMaxNewTokens)
.def_readwrite("sampling_config", &GenLlmReq::mSamplingConfig)
.def_property("state", &GenLlmReq::getState, &GenLlmReq::setState)
.def_property("streaming", &GenLlmReq::isStreaming, &GenLlmReq::setStreaming)
.def_readwrite("end_id", &GenLlmReq::mEndId)
.def_readwrite("pad_id", &GenLlmReq::mPadId)
.def_readwrite("seq_slot", &GenLlmReq::mSeqSlot)
.def_property_readonly("return_log_probs", &GenLlmReq::returnLogProbs)
.def_property_readonly("return_context_logits", &GenLlmReq::getReturnContextLogits)
.def_property_readonly("return_generation_logits", &GenLlmReq::getReturnGenerationLogits)
.def_property_readonly("log_probs", py::overload_cast<>(&GenLlmReq::getLogProbs, py::const_))
.def("get_log_probs", py::overload_cast<GenLlmReq::SizeType32>(&GenLlmReq::getLogProbs, py::const_))
.def("set_log_probs", &GenLlmReq::setLogProbs, py::arg("log_probs"), py::arg("beam"))
.def("set_return_encoder_output", &GenLlmReq::setReturnEncoderOutput, py::arg("return_encoder_output"))
.def("get_return_encoder_output", &GenLlmReq::getReturnEncoderOutput)
.def("priority", py::overload_cast<>(&GenLlmReq::priority, py::const_))
.def("set_priority", py::overload_cast<tle::PriorityType>(&GenLlmReq::setPriority))
.def_property_readonly("cum_log_probs", &GenLlmReq::getCumLogProbs)
.def("set_cum_log_prob", &GenLlmReq::setCumLogProb, py::arg("cum_log_prob"), py::arg("beam"))
.def("update_num_tokens_per_iteration", &GenLlmReq::updateNumTokensPerIteration,
py::arg("num_tokens_per_iteration"), py::arg("model_config"))
.def_property_readonly("orig_prompt_len", &GenLlmReq::getOrigPromptLen)
.def("has_draft_tokens", &GenLlmReq::hasDraftTokens)
.def("move_to_next_context_chunk", &GenLlmReq::moveToNextContextChunk)
.def("is_full_context_request", py::overload_cast<>(&GenLlmReq::isFullContextRequest, py::const_))
.def("is_last_context_chunk", py::overload_cast<>(&GenLlmReq::isLastContextChunk, py::const_))
.def("is_first_context_chunk", py::overload_cast<>(&GenLlmReq::isFirstContextChunk, py::const_))
.def("get_context_remaining_length", py::overload_cast<>(&GenLlmReq::getContextRemainingLength, py::const_))
.def("set_finished_reason", &GenLlmReq::setFinishedReason, py::arg("finish_reason"), py::arg("beam"))
.def_property_readonly("is_finished", &GenLlmReq::isFinished)
.def_property(
"context_current_position", &GenLlmReq::getContextCurrentPosition, &GenLlmReq::setContextCurrentPosition)
.def_property_readonly("prepopulated_prompt_len", &GenLlmReq::getPrepopulatedPromptLen)
.def_property(
"guided_decoding_params", &GenLlmReq::getGuidedDecodingParams, &GenLlmReq::setGuidedDecodingParams)
.def_property_readonly("context_phase_params", &GenLlmReq::getContextPhaseParams)
.def_property_readonly("is_context_only_request", &GenLlmReq::isContextOnlyRequest)
.def_property_readonly("is_context_finished", &GenLlmReq::isContextFinished)
.def_property_readonly("is_disagg_generation_init_state", &GenLlmReq::isDisaggGenerationInitState)
.def_property_readonly(
"is_disagg_generation_transmission_complete", &GenLlmReq::isDisaggGenerationTransmissionComplete)
.def_property_readonly(
"is_disagg_generation_transmission_in_progress", &GenLlmReq::isDisaggGenerationTransmissionInProgress)
.def_property_readonly("is_context_init_state", &GenLlmReq::isContextInitState)
.def_property_readonly("is_generation_in_progress_state", &GenLlmReq::isGenerationInProgressState)
.def_property_readonly("is_disagg_context_transmission_state", &GenLlmReq::isDisaggContextTransmissionState)
.def_property_readonly("is_disagg_context_complete_state", &GenLlmReq::isDisaggContextCompleteState)
.def_property_readonly("llm_request_type", &GenLlmReq::getLlmRequestType)
.def_property_readonly("position_ids",
[](GenLlmReq& self)
{
std::optional<std::vector<GenLlmReq::SizeType32>> positionIds = std::nullopt;
if (self.getPositionIds())
{
positionIds = *self.getPositionIds().value();
}
return positionIds;
})
.def_property(
"draft_tokens",
[](GenLlmReq& self)
{
std::optional<GenLlmReq::VecTokens> draftTokens = std::nullopt;
if (self.hasDraftTokens())
{
draftTokens = *self.getDraftTokens();
}
return draftTokens;
},
[](GenLlmReq& self, std::optional<GenLlmReq::VecTokens> const& draftTokens)
{
if (draftTokens)
{
self.setDraftTokens(std::make_shared<GenLlmReq::VecTokens>(draftTokens.value()));
}
})
.def_property(
"context_logits",
[](GenLlmReq& self)
{
std::optional<at::Tensor> value{std::nullopt};
GenLlmReq::TensorPtr const& tensor = self.getContextLogitsHost();
if (tensor)
{
value = tr::Torch::tensor(tensor);
}
return value;
},
[](GenLlmReq& self, at::Tensor& logits) { self.setContextLogitsHost(tr::TorchView::of(logits)); });
py::classh<tb::LlmRequest, GenLlmReq>(m, "LlmRequest", pybind11::dynamic_attr())
.def(py::init(
[](tb::LlmRequest::RequestIdType request_id, tb::LlmRequest::SizeType32 max_new_tokens,
std::vector<tb::LlmRequest::TokenIdType> input_tokens, runtime::SamplingConfig sampling_config,
bool is_streaming, std::optional<tb::LlmRequest::SizeType32> end_id,
std::optional<tb::LlmRequest::SizeType32> pad_id, std::optional<at::Tensor> embedding_bias,
std::optional<at::Tensor> bad_words_list, std::optional<at::Tensor> stop_words_list,
std::optional<std::vector<tb::LlmRequest::SizeType32>> position_ids,
std::optional<at::Tensor> prompt_embedding_table,
std::optional<tb::LlmRequest::SizeType32> prompt_vocab_size,
std::optional<at::Tensor> mrope_rotary_cos_sin,
std::optional<tb::LlmRequest::SizeType32> mrope_position_deltas,
std::optional<LoraTaskIdType> lora_task_id, std::optional<at::Tensor> lora_weights,
std::optional<at::Tensor> lora_config,
std::optional<executor::LookaheadDecodingConfig> lookahead_config,
std::optional<executor::KvCacheRetentionConfig> kv_cache_retention_config, bool return_log_probs,
bool return_context_logits, bool return_generation_logits,
std::optional<tb::LlmRequest::VecTokens> draft_tokens, std::optional<at::Tensor> draft_logits,
bool exclude_input_from_output,
std::optional<tb::LlmRequest::LogitsPostProcessor> logits_post_processor,
bool apply_logits_post_processor_batched,
std::optional<tb::LlmRequest::VecTokens> encoder_input_tokens, bool return_encoder_output,
std::optional<tb::LlmRequest::RequestIdType> client_id, executor::PriorityType priority,
std::optional<at::Tensor> encoder_input_features,
std::optional<tb::LlmRequest::SizeType32> encoder_output_length,
std::optional<at::Tensor> cross_attention_mask, tb::LlmRequestType llm_request_type,
std::optional<tb::LlmRequest::VecTokenExtraIds> input_token_extra_ids,
tb::LlmRequest::SizeType32 num_return_sequences, std::optional<executor::EagleConfig> eagle_config,
std::optional<at::Tensor> skip_cross_attn_blocks, bool return_perf_metrics,
std::optional<executor::GuidedDecodingParams> guided_decoding_params,
std::optional<tb::LlmRequest::SizeType32> language_adapter_uid,
std::optional<tb::LlmRequest::MillisecondsType> allotted_time_ms,
std::optional<executor::ContextPhaseParams> context_phase_params)
{
auto makeOptionalTensor = [](std::optional<at::Tensor> const& atTensor, bool unsqueeze = false)
{
std::optional<tb::LlmRequest::TensorPtr> tensorPtr = std::nullopt;
if (atTensor)
{
tensorPtr = tr::TorchView::of(atTensor.value());
if (unsqueeze)
{
(*tensorPtr)->unsqueeze(0);
}
}
return tensorPtr;
};
auto embedding_bias_tensor_ptr = makeOptionalTensor(embedding_bias, true);
auto bad_words_list_tensor_ptr = makeOptionalTensor(bad_words_list, true);
auto stop_words_list_tensor_ptr = makeOptionalTensor(stop_words_list, true);
auto prompt_embedding_table_tensor_ptr = makeOptionalTensor(prompt_embedding_table);
auto lora_weights_tensor_ptr = makeOptionalTensor(lora_weights);
auto mrope_rotary_cos_sin_tensor_ptr = makeOptionalTensor(mrope_rotary_cos_sin);
auto lora_config_tensor_ptr = makeOptionalTensor(lora_config);
auto draft_logits_tensor_ptr = makeOptionalTensor(draft_logits);
auto encoder_input_features_tensor_ptr = makeOptionalTensor(encoder_input_features);
auto cross_attention_mask_tensor_ptr = makeOptionalTensor(cross_attention_mask);
auto skip_cross_attn_blocks_tensor_ptr = makeOptionalTensor(skip_cross_attn_blocks);
// 45 parameters
return tb::LlmRequest{request_id, max_new_tokens, input_tokens, sampling_config, is_streaming,
end_id, pad_id, embedding_bias_tensor_ptr, bad_words_list_tensor_ptr,
stop_words_list_tensor_ptr, position_ids, prompt_embedding_table_tensor_ptr, prompt_vocab_size,
mrope_rotary_cos_sin_tensor_ptr, mrope_position_deltas, lora_task_id, lora_weights_tensor_ptr,
lora_config_tensor_ptr, lookahead_config, kv_cache_retention_config, return_log_probs,
return_context_logits, return_generation_logits, draft_tokens, draft_logits_tensor_ptr,
exclude_input_from_output, logits_post_processor, apply_logits_post_processor_batched,
encoder_input_tokens, return_encoder_output, client_id, priority,
encoder_input_features_tensor_ptr, encoder_output_length, cross_attention_mask_tensor_ptr,
llm_request_type, input_token_extra_ids, num_return_sequences, eagle_config,
skip_cross_attn_blocks_tensor_ptr, return_perf_metrics, guided_decoding_params,
language_adapter_uid, allotted_time_ms, context_phase_params};
}),
py::arg("request_id"), py::arg("max_new_tokens"), py::arg("input_tokens"), py::arg("sampling_config"),
py::arg("is_streaming"), py::arg("end_id") = std::nullopt, py::arg("pad_id") = std::nullopt,
py::arg("embedding_bias") = std::nullopt, py::arg("bad_words_list") = std::nullopt,
py::arg("stop_words_list") = std::nullopt, py::arg("position_ids") = std::nullopt,
py::arg("prompt_embedding_table") = std::nullopt, py::arg("prompt_vocab_size") = std::nullopt,
py::arg("mrope_rotary_cos_sin") = std::nullopt, py::arg("mrope_position_deltas") = std::nullopt,
py::arg("lora_task_id") = std::nullopt, py::arg("lora_weights") = std::nullopt,
py::arg("lora_config") = std::nullopt, py::arg("lookahead_config") = std::nullopt,
py::arg("kv_cache_retention_config") = std::nullopt, py::arg("return_log_probs") = false,
py::arg("return_context_logits") = false, py::arg("return_generation_logits") = false,
py::arg("draft_tokens") = std::nullopt, py::arg("draft_logits") = std::nullopt,
py::arg("exclude_input_from_output") = false, py::arg("logits_post_processor") = std::nullopt,
py::arg("apply_logits_post_processor_batched") = false, py::arg("encoder_input_tokens") = std::nullopt,
py::arg("return_encoder_output") = false, py::arg("client_id") = std::nullopt,
py::arg("priority") = executor::Request::kDefaultPriority, py::arg("encoder_input_features") = std::nullopt,
py::arg("encoder_output_len") = std::nullopt, py::arg("cross_attention_mask") = std::nullopt,
py::arg_v("llm_request_type", tb::LlmRequestType::LLMREQUEST_TYPE_CONTEXT_AND_GENERATION,
"LlmRequestType.LLMREQUEST_TYPE_CONTEXT_AND_GENERATION"),
py::arg("input_token_extra_ids") = std::nullopt, py::arg("num_return_sequences") = 1,
py::arg("eagle_config") = std::nullopt, py::arg("skip_cross_attn_blocks") = std::nullopt,
py::arg("return_perf_metrics") = false, py::arg("guided_decoding_params") = std::nullopt,
py::arg("language_adapter_uid") = std::nullopt, py::arg("allotted_time_ms") = std::nullopt,
py::arg("context_phase_params") = std::nullopt)
.def("validate", &tb::LlmRequest::validate, py::arg("max_input_len"), py::arg("max_seq_len"),
py::arg("max_draft_len"), py::arg("vocab_size_padded"), py::arg("max_endocer_input_len") = std::nullopt,
py::arg("enable_kv_cache_reuse") = false)
.def("create_response", &tb::LlmRequest::createResponse, py::arg("use_fast_logits") = false,
py::arg("mpi_world_rank") = 0)
.def("move_prompt_embedding_table_to_gpu", &tb::LlmRequest::movePromptEmbeddingTableToGpu, py::arg("manager"))
.def("move_lora_weights_to_gpu", &tb::LlmRequest::moveLoraWeightsToGpu, py::arg("manager"))
.def("finish_by_reason", &tb::LlmRequest::finishByReason, py::arg("finish_reason"));
py::bind_vector<tb::RequestVector>(m, "RequestVector");
// Note: Making an opaque binding out of RequestList would impact any std::vector<unsigned> conversion
// PybindUtils::bindList<tb::RequestList>(m, "RequestList");
py::classh<tb::SequenceSlotManager>(m, "SequenceSlotManager")
.def(py::init<tb::SequenceSlotManager::SlotIdType, uint64_t>(), py::arg("max_num_slots"),
py::arg("max_sequence_idle_microseconds"))
.def("get_sequence_slot", &tb::SequenceSlotManager::getSequenceSlot, py::arg("start_flag"),
py::arg("sequence_id"))
.def("free_sequence_slot", &tb::SequenceSlotManager::freeSequenceSlot, py::arg("sequence_id"))
.def("free_idle_sequence_slots", &tb::SequenceSlotManager::freeIdleSequenceSlots);
py::classh<tb::rnn_state_manager::RnnStateManager>(m, "RnnStateManager")
.def(py::init<tr::SizeType32, tr::ModelConfig, tr::WorldConfig, tr::BufferManager>(),
py::arg("max_num_sequences"), py::arg("model_config"), py::arg("world_config"), py::arg("buffer_manager"));
py::class_<tb::DecoderInputBuffers>(m, "DecoderInputBuffers")
.def(py::init<runtime::SizeType32, runtime::SizeType32, tr::BufferManager>(), py::arg("max_batch_size"),
py::arg("max_tokens_per_engine_step"), py::arg("manager"))
.def_readwrite("setup_batch_slots", &tb::DecoderInputBuffers::setupBatchSlots)
.def_readwrite("forward_batch_slots_request_order", &tb::DecoderInputBuffers::forwardBatchSlotsRequestOrder)
.def_readwrite(
"forward_batch_slots_request_order_device", &tb::DecoderInputBuffers::forwardBatchSlotsRequestOrderDevice)
.def_readwrite("fill_values", &tb::DecoderInputBuffers::fillValues)
.def_readwrite("fill_values_device", &tb::DecoderInputBuffers::fillValuesDevice)
.def_readwrite("inputs_ids", &tb::DecoderInputBuffers::inputsIds)
.def_readwrite("forward_batch_slots", &tb::DecoderInputBuffers::forwardBatchSlots);
py::class_<tb::DecoderBuffers::DraftBuffers>(m, "DraftBuffers")
.def(py::init())
.def_readwrite("next_draft_tokens_device", &tb::DecoderBuffers::DraftBuffers::nextDraftTokensDevice)
.def_readwrite("next_draft_tokens_host", &tb::DecoderBuffers::DraftBuffers::nextDraftTokensHost)
.def_readwrite(
"prev_draft_tokens_lengths_device", &tb::DecoderBuffers::DraftBuffers::prevDraftTokensLengthsDevice)
.def_readwrite("prev_draft_tokens_lengths_host", &tb::DecoderBuffers::DraftBuffers::prevDraftTokensLengthsHost)
.def_readwrite(
"next_draft_tokens_lengths_device", &tb::DecoderBuffers::DraftBuffers::nextDraftTokensLengthsDevice)
.def_readwrite("next_draft_tokens_lengths_host", &tb::DecoderBuffers::DraftBuffers::nextDraftTokensLengthsHost)
.def_readwrite(
"accepted_lengths_cum_sum_device", &tb::DecoderBuffers::DraftBuffers::acceptedLengthsCumSumDevice)
.def_readwrite("accepted_packed_paths_device", &tb::DecoderBuffers::DraftBuffers::acceptedPackedPathsDevice)
.def_readwrite("predicted_draft_logits", &tb::DecoderBuffers::DraftBuffers::predictedDraftLogits)
.def("create", &tb::DecoderBuffers::DraftBuffers::create, py::arg("max_num_sequences"),
py::arg("max_tokens_per_step"), py::arg("runtime"), py::arg("model_config"));
py::classh<tb::DecoderBuffers>(m, "DecoderBuffers")
.def(py::init<runtime::SizeType32, runtime::SizeType32, runtime::SizeType32, runtime::SizeType32,
runtime::SizeType32, runtime::BufferManager const&, runtime::ModelConfig const&,
runtime::WorldConfig const&>(),
py::arg("max_num_sequences"), py::arg("max_beam_width"), py::arg("max_attention_window"),
py::arg("max_seq_len"), py::arg("max_tokens_per_step"), py::arg("buffer_manager"), py::arg("model_config"),
py::arg("world_config"))
.def_readwrite("logits", &tb::DecoderBuffers::logits)
.def_readwrite("slot_output_ids", &tb::DecoderBuffers::slotOutputIds)
.def_readwrite("slot_output_ids_host", &tb::DecoderBuffers::slotOutputIdsHost)
.def_readwrite("cache_indirection_input", &tb::DecoderBuffers::cacheIndirectionInput)
.def_readwrite("cache_indirection_output", &tb::DecoderBuffers::cacheIndirectionOutput)
.def_property_readonly(
"sequence_lengths", [](tb::DecoderBuffers& self) { return tr::Torch::tensor(self.sequenceLengths); })
.def_readwrite("sequence_lengths_host", &tb::DecoderBuffers::sequenceLengthsHost)
.def_readwrite("finished_sum_host", &tb::DecoderBuffers::finishedSumHost)
.def_property_readonly(
"new_output_tokens", [](tb::DecoderBuffers& self) { return tr::Torch::tensor(self.newOutputTokens); })
.def_property_readonly("new_output_tokens_host",
[](tb::DecoderBuffers& self) { return tr::Torch::tensor(self.newOutputTokensHost); })
.def_readwrite("cum_log_probs", &tb::DecoderBuffers::cumLogProbs)
.def_readwrite("cum_log_probs_host", &tb::DecoderBuffers::cumLogProbsHost)
.def_readwrite("log_probs", &tb::DecoderBuffers::logProbs)
.def_readwrite("log_probs_host", &tb::DecoderBuffers::logProbsHost)
.def_readwrite("finish_reasons_host", &tb::DecoderBuffers::finishReasonsHost)
.def_readwrite("draft_buffers", &tb::DecoderBuffers::draftBuffers);
py::class_<tb::SlotDecoderBuffers>(m, "SlotDecoderBuffers")
.def(py::init<runtime::SizeType32, runtime::SizeType32, runtime::BufferManager const&>(),
py::arg("max_beam_width"), py::arg("max_seq_len"), py::arg("buffer_manager"))
.def_readwrite("output_ids", &tb::SlotDecoderBuffers::outputIds)
.def_readwrite("output_ids_host", &tb::SlotDecoderBuffers::outputIdsHost)
.def_readwrite("sequence_lengths_host", &tb::SlotDecoderBuffers::sequenceLengthsHost)
.def_readwrite("cum_log_probs", &tb::SlotDecoderBuffers::cumLogProbs)
.def_readwrite("cum_log_probs_host", &tb::SlotDecoderBuffers::cumLogProbsHost)
.def_readwrite("log_probs", &tb::SlotDecoderBuffers::logProbs)
.def_readwrite("log_probs_host", &tb::SlotDecoderBuffers::logProbsHost)
.def_readwrite("finish_reasons_host", &tb::SlotDecoderBuffers::finishReasonsHost);
py::class_<tb::MedusaBuffers>(m, "MedusaBuffers")
.def(py::init<runtime::SizeType32, runtime::SizeType32, runtime::BufferManager const&,
runtime::ModelConfig const&, runtime::WorldConfig const&, executor::DecodingConfig const&,
runtime::TllmRuntime const&>(),
py::arg("max_beam_width"), py::arg("max_seq_len"), py::arg("buffer_manager"), py::arg("model_config"),
py::arg("world_config"), py::arg("decoding_config"), py::arg("runtime"));
}
} // namespace tensorrt_llm::pybind::batch_manager