TensorRT-LLMs/cpp/tests/unit_tests/kernels/allReduce/moeAllReduceFusionTest.cu
hlu1 8207d5fd39
[None] [feat] Add model gpt-oss (#6645)
Signed-off-by: Hao Lu <14827759+hlu1@users.noreply.github.com>
2025-08-07 03:04:18 -04:00

691 lines
25 KiB
Plaintext

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda_runtime.h>
#include <gtest/gtest.h>
#include <nccl.h>
#include <cstdint>
#include <functional>
#include <iostream>
#include <random>
#include <vector>
#include "tensorrt_llm/kernels/communicationKernels/allReduceWorkspace.h"
#include "tensorrt_llm/kernels/communicationKernels/moeAllReduceFusionKernels.h"
#include "tensorrt_llm/kernels/quantization.h"
#include "tensorrt_llm/kernels/rmsnormKernels.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/utils/mpiUtils.h"
#include "tensorrt_llm/runtime/utils/multiDeviceUtils.h"
namespace mpi = tensorrt_llm::mpi;
namespace tr = tensorrt_llm::runtime;
using namespace tensorrt_llm::kernels;
template <typename DType>
__global__ void residual_add_kernel(DType* data, DType* residual, int size)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= size)
return;
data[idx] = data[idx] + residual[idx];
}
template <typename DType>
void residual_add(DType* data, DType* residual, int size, cudaStream_t stream)
{
residual_add_kernel<<<size / 128, 128, 0, stream>>>(data, residual, size);
}
template <typename DType>
__global__ void cast_to_fp32_kernel(DType* in, float* out, int size)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx >= size)
return;
out[idx] = static_cast<float>(in[idx]);
}
template <typename DType>
void cast_to_fp32(DType* in, float* out, int size, cudaStream_t stream)
{
cast_to_fp32_kernel<<<size / 128, 128, 0, stream>>>(in, out, size);
}
template <typename T>
void print(int rank, void* _pa, int size)
{
auto pa = reinterpret_cast<T*>(_pa);
if (rank == 0)
{
printf("print: [");
for (int n = 0; n < 20; ++n)
{
float v = static_cast<float>(pa[n]);
printf("%f, ", v);
}
printf("...]\n");
}
}
template <typename T>
float compare(int rank, void* _pa, void* _pb, int size, float scale, std::string const& cmp_info = "")
{
auto pa = reinterpret_cast<T*>(_pa);
auto pb = reinterpret_cast<T*>(_pb);
float max_diff = 0.f, tot_diff = 0.f;
float max_val = 0.f;
int diff_cnt = 0;
float threshold = 1e-7;
static char* ar_debug = std::getenv("AR_DEBUG");
if (ar_debug && rank == 0)
{
printf("TensorA: [");
for (int n = 0; n < 20; ++n)
{
float v = static_cast<float>(pa[n]);
printf("%f, ", v);
}
printf("...]\n");
printf("TensorB: [");
for (int n = 0; n < 20; ++n)
{
float v = static_cast<float>(pb[n]);
printf("%f, ", v);
}
printf("...]\n");
}
int print_cnt = 0;
for (int n = 0; n < size; ++n)
{
float va = static_cast<float>(pa[n]);
float vb = static_cast<float>(pb[n]);
max_val = std::max(max_val, vb);
float diff = std::abs(va - vb);
if (diff > threshold)
{
max_diff = std::max(max_diff, diff);
tot_diff += diff;
++diff_cnt;
}
if (rank == 0 && print_cnt < 20 && ar_debug && diff / (std::abs(vb) + 1e-7) > 0.1)
{
++print_cnt;
printf("idx %d, va %f, vb %f\n", n, va, vb);
}
}
float diff_thres = max_val * scale;
if (rank == 0)
{
TLLM_LOG_INFO("[%s] rank %d, max diff %f (diff threshold %f), avg diff %f, diff cnt %d/%d", cmp_info.c_str(),
rank, max_diff, diff_thres, tot_diff / std::max(diff_cnt, 1), diff_cnt, size);
}
return max_diff <= diff_thres;
}
template <typename T1, typename T2>
void random_fill(T1* data, int size, T2 minv, T2 maxv)
{
static int rseed = 20250227;
std::mt19937 gen(rseed++);
std::uniform_real_distribution<float> dis(static_cast<float>(minv), static_cast<float>(maxv));
for (int i = 0; i < size; ++i)
{
data[i] = static_cast<T1>(dis(gen));
}
}
struct CudaBuffer
{
void* m_d_data;
void* m_h_data;
int m_size;
CudaBuffer(int size_in_bytes = 0)
: m_size(size_in_bytes)
, m_d_data(nullptr)
, m_h_data(nullptr)
{
allocate(size_in_bytes);
}
void allocate(int size_in_bytes)
{
if (size_in_bytes == 0)
return;
TLLM_CHECK(m_d_data == nullptr && m_h_data == nullptr);
m_size = size_in_bytes;
TLLM_CUDA_CHECK(cudaMalloc(&m_d_data, m_size));
TLLM_CUDA_CHECK(cudaMemset(m_d_data, 0, m_size));
m_h_data = malloc(m_size);
}
template <typename T = void>
T* device_data()
{
TLLM_CHECK(m_d_data != nullptr);
return reinterpret_cast<T*>(m_d_data);
}
template <typename T = void>
T* host_data()
{
TLLM_CHECK(m_h_data != nullptr);
d2h();
return reinterpret_cast<T*>(m_h_data);
}
template <typename DType, typename VType>
void random(VType minv, VType maxv)
{
random_fill(reinterpret_cast<DType*>(m_h_data), m_size / sizeof(DType), minv, maxv);
h2d();
}
void h2d()
{
TLLM_CUDA_CHECK(cudaMemcpy(m_d_data, m_h_data, m_size, cudaMemcpyHostToDevice));
}
void d2h()
{
TLLM_CUDA_CHECK(cudaMemcpy(m_h_data, m_d_data, m_size, cudaMemcpyDeviceToHost));
}
~CudaBuffer()
{
if (m_d_data)
{
TLLM_CUDA_CHECK(cudaFree(m_d_data));
}
if (m_h_data)
{
free(m_h_data);
}
}
};
/////////////////////////////////////////////////////////////////
// * MoE Reduction Fusion * //
/////////////////////////////////////////////////////////////////
template <typename IOType>
union ACCESS_TYPE
{
static constexpr int ELEM_PER_ACCESS = 16 / sizeof(IOType);
// For LDG.128 STG.128 access
int4 packed;
IOType unpacked[ELEM_PER_ACCESS];
};
template <typename IOType, typename ScaleType>
__global__ void moe_reduction_kernel(IOType const* ggemm2_actexp_m_hidden_in, IOType const* fc2_m_hidden_in,
ScaleType const* scale_actexp_m_in, int const* actexpi_to_global_expid, IOType* reduce_m_hidden_ou, int num_act_exp,
int num_token, int hidden_size)
{
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900))
static_assert(sizeof(ScaleType) >= sizeof(IOType), "This kernel assume scale type is more precious than io type");
namespace cg = cooperative_groups;
cg::cluster_group cluster = cg::this_cluster();
cg::grid_group grid = cg::this_grid();
using ACC_TYPE = ACCESS_TYPE<IOType>;
// Each cluster handle one token
// Each thread handle ACC_TYPE::ELEM_PER_ACCESS element per token per expert
int threadid_in_cluster = cluster.thread_rank();
// Start Offset within one token's hidden_size of element
// Current thread handle token[thread_offset_within_token : thread_offset_within_token + ACC_TYPE::ELEM_PER_ACCESS]
int thread_offset_within_token = threadid_in_cluster * ACC_TYPE::ELEM_PER_ACCESS;
if (thread_offset_within_token >= hidden_size)
{
return;
}
cudaGridDependencySynchronize();
// Same as AR + Fusion kernel, use persistent kernel design
for (int token_id = grid.cluster_rank(); token_id < num_token; token_id += grid.num_clusters())
{
// Offset within (num_token, hidden_size) in unit of element
int thread_offset_across_token = token_id * hidden_size + thread_offset_within_token;
ACC_TYPE accumulator;
#pragma unroll
for (int i = 0; i < ACC_TYPE::ELEM_PER_ACCESS; ++i)
{
accumulator.unpacked[i] = static_cast<IOType>(0);
}
// * Iterate through all active expert
for (int actexp_i = 0; actexp_i < num_act_exp; ++actexp_i)
{
// * Load active expert i's token j's partial data
// Offset within (num_act_exp, num_token, hidden_size) in unit of element
int thread_offset_across_actexp_token = actexp_i * (hidden_size * num_token) + thread_offset_across_token;
ACC_TYPE actexp_i_data;
actexp_i_data.packed = reinterpret_cast<int4 const*>(
ggemm2_actexp_m_hidden_in)[thread_offset_across_actexp_token / ACC_TYPE::ELEM_PER_ACCESS];
// * Load active expert i's token j's scale
int gloabl_exp_id = actexpi_to_global_expid[actexp_i];
int thread_offset_scale = gloabl_exp_id * num_token + token_id;
ScaleType actexp_i_token_j_scale
= reinterpret_cast<ScaleType const*>(scale_actexp_m_in)[thread_offset_scale];
// * acc += scale(data)
#pragma unroll
for (int i = 0; i < ACC_TYPE::ELEM_PER_ACCESS; ++i)
{
// assume computation is done in ScaleType
accumulator.unpacked[i] += static_cast<IOType>(
(static_cast<ScaleType>(actexp_i_data.unpacked[i]) * actexp_i_token_j_scale));
}
}
// * FC2 + reduced(gGEMM2)
ACC_TYPE fc2_data;
fc2_data.packed
= reinterpret_cast<int4 const*>(fc2_m_hidden_in)[thread_offset_across_token / ACC_TYPE::ELEM_PER_ACCESS];
#pragma unroll
for (int i = 0; i < ACC_TYPE::ELEM_PER_ACCESS; ++i)
{
accumulator.unpacked[i] += fc2_data.unpacked[i];
}
// * Store
// Only store valid section of ACC_TYPE::ELEM_PER_ACCESS
reinterpret_cast<int4*>(reduce_m_hidden_ou)[thread_offset_across_token / ACC_TYPE::ELEM_PER_ACCESS]
= accumulator.packed;
}
cudaTriggerProgrammaticLaunchCompletion();
#endif
}
template <typename IOType, typename ScaleType>
void moe_reduction_kernel_launcher(IOType const* ggemm2_actexp_m_hidden_in, IOType const* fc2_m_hidden_in,
ScaleType const* scale_actexp_m_in, int const* actexpi_to_global_expid, IOType* reduce_m_hidden_ou, int num_act_exp,
int num_token, int hidden_size)
{
// * Device Property & SM
int device_id;
TLLM_CUDA_CHECK(cudaGetDevice(&device_id));
cudaDeviceProp device_prop;
cudaGetDeviceProperties(&device_prop, 0);
int sm_count = device_prop.multiProcessorCount;
cudaStream_t stream;
cudaStreamCreate(&stream);
using ACC_TYPE = ACCESS_TYPE<IOType>;
// * Check for launch assumption
if (hidden_size % ACC_TYPE::ELEM_PER_ACCESS != 0)
{
printf("FAILED. Unable to launch as hidden_size must be multiplier of ACC_TYPE::ELEM_PER_ACCESS\n");
return;
}
// * Heuristic for launch config
// targeting low latency inference to fully utilize as much SM as possible
int num_thread_per_token = hidden_size / ACC_TYPE::ELEM_PER_ACCESS;
int num_warp_per_token = (num_thread_per_token + 32 - 1) / 32;
int cluster_dim = 8;
while (num_warp_per_token % cluster_dim != 0)
{
cluster_dim /= 2;
}
int block_dim = num_warp_per_token / cluster_dim * 32;
int grid_dim = min(sm_count, num_token * cluster_dim) / cluster_dim * cluster_dim;
printf(
"* num_act_exp %d, num_token %d, hidden_size %d, num_warp_per_token %d, heuristic pick grid %d cluster %d "
"block %d\n",
num_act_exp, num_token, hidden_size, num_warp_per_token, grid_dim, cluster_dim, block_dim);
// * Launch Config
cudaLaunchConfig_t config = {0};
cudaLaunchAttribute attribute[2];
attribute[0].id = cudaLaunchAttributeProgrammaticStreamSerialization;
attribute[0].val.programmaticStreamSerializationAllowed = 1;
attribute[1].id = cudaLaunchAttributeClusterDimension;
attribute[1].val.clusterDim.x = cluster_dim;
attribute[1].val.clusterDim.y = 1;
attribute[1].val.clusterDim.z = 1;
config.gridDim = grid_dim;
config.blockDim = block_dim;
config.stream = stream;
config.numAttrs = 2;
config.attrs = attribute;
config.dynamicSmemBytes = 0;
TLLM_CUDA_CHECK(
cudaLaunchKernelEx(&config, moe_reduction_kernel<IOType, ScaleType>, ggemm2_actexp_m_hidden_in, fc2_m_hidden_in,
scale_actexp_m_in, actexpi_to_global_expid, reduce_m_hidden_ou, num_act_exp, num_token, hidden_size));
TLLM_CUDA_CHECK(cudaPeekAtLastError());
TLLM_CUDA_CHECK(cudaDeviceSynchronize());
}
template <typename DType>
class MoEARFuseTestRunner
{
static_assert(std::is_same_v<DType, half> || std::is_same_v<DType, __nv_bfloat16>);
static constexpr ncclDataType_t kNCCLDataType = std::is_same_v<DType, half> ? ncclFloat16 : ncclBfloat16;
static constexpr nvinfer1::DataType kTRTDataType
= std::is_same_v<DType, half> ? nvinfer1::DataType::kHALF : nvinfer1::DataType::kBF16;
public:
MoEARFuseTestRunner(int max_token_num, int hidden_dim, int max_expert_num)
: m_mpi_comm(mpi::MpiComm::world())
{
m_message_size = max_token_num * hidden_dim;
m_world_size = m_mpi_comm.getSize();
m_rank = m_mpi_comm.getRank();
TLLM_CUDA_CHECK(cudaSetDevice(m_rank));
ncclUniqueId id;
if (m_rank == 0)
{
TLLM_NCCL_CHECK(ncclGetUniqueId(&id));
}
m_mpi_comm.bcast(&id, sizeof(id), mpi::MpiType::kBYTE, 0);
TLLM_NCCL_CHECK(ncclCommInitRank(&m_nccl_comm, m_world_size, id, m_rank));
m_allreduce_in.allocate(m_message_size * sizeof(DType));
m_residual_in.allocate(m_message_size * sizeof(DType));
m_residual_out.allocate(m_message_size * sizeof(DType));
m_norm_out.allocate(m_message_size * sizeof(DType));
m_quant_out.allocate(m_message_size * sizeof(DType));
m_scale_out.allocate(m_message_size * sizeof(DType));
m_rms_gamma.allocate(hidden_dim * sizeof(DType));
m_scale_factor.allocate(sizeof(float));
m_stream = std::make_shared<tr::CudaStream>();
m_workspace = std::make_shared<ar_fusion::Workspace>(m_rank, m_world_size, max_token_num, hidden_dim, m_stream);
m_params.nranks = m_world_size;
m_params.rank = m_rank;
m_params.dtype = kTRTDataType;
m_params.workspace = m_workspace->get_workspace();
m_params.allreduce_in = m_allreduce_in.device_data();
m_params.residual_in = m_residual_in.device_data();
m_params.residual_out = m_residual_out.device_data();
m_params.norm_out = m_norm_out.device_data();
m_params.quant_out = m_quant_out.device_data();
m_params.scale_out = m_scale_out.device_data();
m_params.rms_gamma = m_rms_gamma.device_data();
m_params.scale_factor = m_scale_factor.device_data<float>();
m_params.rms_eps = 1e-3;
m_params.stream = m_stream->get();
// * moe reduction related param
m_max_expert_num = max_expert_num;
// [device_num_expert, m]
m_moe_reduction_scale_input.allocate(m_max_expert_num * max_token_num * sizeof(float));
// [device_num_expert, m, 7168]
m_moe_reduction_active_experts_token_input.allocate(m_max_expert_num * m_message_size * sizeof(DType));
// [m, 7168]
m_moe_reduction_token_input.allocate(m_message_size * sizeof(DType));
// [1]
m_moe_reduction_device_num_experts.allocate(sizeof(int));
m_params.moe_reduction_scale_input = reinterpret_cast<float*>(m_moe_reduction_scale_input.device_data());
m_params.moe_reduction_active_experts_token_input = m_moe_reduction_active_experts_token_input.device_data();
m_params.moe_reduction_token_input = m_moe_reduction_token_input.device_data();
m_params.moe_reduction_device_num_experts
= reinterpret_cast<int*>(m_moe_reduction_device_num_experts.device_data());
}
void random_input()
{
m_allreduce_in.random<DType>(-100.f, 100.f);
m_residual_in.random<DType>(-100.f, 100.f);
m_rms_gamma.random<DType>(-1.f, 1.f);
m_scale_factor.random<float>(5.f, 5.f);
// * moe reduction
m_moe_reduction_scale_input.random<float>(-100.f, 100.f);
m_moe_reduction_active_experts_token_input.random<DType>(-100.f, 100.f);
m_moe_reduction_token_input.random<DType>(-100.f, 100.f);
}
template <typename Func>
float benchmark(Func func, int warmup, int iter, int token_num, int hidden_dim, int num_active_expert = 0)
{
m_params.size = token_num * hidden_dim;
m_params.hidden_dim = hidden_dim;
cudaMemcpy(m_params.moe_reduction_device_num_experts, &num_active_expert, sizeof(int), cudaMemcpyHostToDevice);
cudaEvent_t begin, end;
cudaEventCreate(&begin);
cudaEventCreate(&end);
random_input();
m_mpi_comm.barrier();
for (int i = 0; i < warmup; ++i)
{
(this->*func)(token_num, hidden_dim, num_active_expert);
}
cudaEventRecord(begin, m_stream->get());
for (int i = 0; i < iter; ++i)
{
(this->*func)(token_num, hidden_dim, num_active_expert);
}
cudaEventRecord(end, m_stream->get());
cudaEventSynchronize(end);
float time;
cudaEventElapsedTime(&time, begin, end);
time /= iter;
m_mpi_comm.barrier();
cudaEventDestroy(begin);
cudaEventDestroy(end);
return time * 1000;
}
int get_sm_count() const
{
static int sm_count = 0;
if (sm_count == 0)
{
int device_id;
TLLM_CUDA_CHECK(cudaGetDevice(&device_id));
cudaDeviceProp device_prop;
cudaGetDeviceProperties(&device_prop, device_id);
sm_count = device_prop.multiProcessorCount;
}
return sm_count;
}
void verify(int token_num, int hidden_dim, int num_active_expert)
{
int message_size = token_num * hidden_dim;
CudaBuffer ref_output(message_size * sizeof(DType)), ref_scale(message_size * sizeof(DType));
// * MoE Reduction
moe_reduction_kernel_launcher<DType, float>(m_moe_reduction_active_experts_token_input.device_data<DType>(),
m_moe_reduction_token_input.device_data<DType>(), m_moe_reduction_scale_input.device_data<float>(),
ref_output.device_data<DType>(), num_active_expert, token_num, hidden_dim);
compare<DType>(
m_rank, m_allreduce_in.host_data(), ref_output.host_data(), message_size, 1e-3, "moe reduction out");
// * AR
TLLM_NCCL_CHECK(ncclAllReduce(m_allreduce_in.device_data(), ref_output.device_data(), message_size,
kNCCLDataType, ncclSum, m_nccl_comm, 0));
// * Add
residual_add(ref_output.device_data<DType>(), m_residual_in.device_data<DType>(), message_size, 0);
// * Norm
invokeGeneralRmsNorm<DType, int8_t>(ref_output.device_data<DType>(), ref_output.device_data<DType>(),
m_rms_gamma.device_data<DType>(), nullptr, m_params.rms_eps, token_num, hidden_dim,
tensorrt_llm::common::QuantMode(), 0);
compare<DType>(m_rank, m_norm_out.host_data(), ref_output.host_data(), message_size, 1e-3, "norm out");
// * Quant
invokeFP4Quantization(token_num, hidden_dim, m_norm_out.device_data<DType>(),
m_scale_factor.device_data<float>(), ref_output.device_data<int64_t>(), ref_scale.device_data<int32_t>(),
false, tensorrt_llm::QuantizationSFLayout::SWIZZLED, 128, 0);
compare<int8_t>(m_rank, m_quant_out.host_data(), ref_output.host_data(), message_size / 2, 1e-3, "quant out");
compare<int8_t>(m_rank, m_scale_out.host_data(), ref_scale.host_data(), message_size / 16, 1e-3, "scale out");
}
void run_nccl_allreduce(int token_num, int hidden_dim, int)
{
TLLM_NCCL_CHECK(ncclAllReduce(m_allreduce_in.device_data(), m_residual_out.device_data(),
token_num * hidden_dim, kNCCLDataType, ncclSum, m_nccl_comm, m_stream->get()));
}
void run_moe_reduction(int token_num, int hidden_dim, int num_active_expert)
{
moe_reduction_kernel_launcher<DType, float>(m_moe_reduction_active_experts_token_input.device_data<DType>(),
m_moe_reduction_token_input.device_data<DType>(), m_moe_reduction_scale_input.device_data<float>(),
m_allreduce_in.device_data<DType>(), num_active_expert, token_num, hidden_dim);
}
void run_residual_add(int token_num, int hidden_dim, int)
{
residual_add(m_residual_out.device_data<DType>(), // output and input
m_residual_in.device_data<DType>(), // input
token_num * hidden_dim, m_stream->get());
}
void run_rms_norm(int token_num, int hidden_dim, int)
{
invokeGeneralRmsNorm<DType, int8_t>(m_residual_out.device_data<DType>(), m_norm_out.device_data<DType>(),
m_rms_gamma.device_data<DType>(), nullptr, m_params.rms_eps, token_num, hidden_dim,
tensorrt_llm::common::QuantMode(), m_stream->get());
}
void run_fp4_quant(int token_num, int hidden_dim, int)
{
invokeFP4Quantization(token_num, // m
hidden_dim, // n
m_norm_out.device_data<DType>(), // input
m_scale_factor.device_data<float>(), // input sf
m_quant_out.device_data<int64_t>(), // output
m_scale_out.device_data<int32_t>(), // output sf
false, tensorrt_llm::QuantizationSFLayout::SWIZZLED, 128, m_stream->get());
}
void run_kernel(int token_num, int hidden_dim)
{
ar_fusion::moe::moereduction_allreduce_fusion_op(m_params);
}
~MoEARFuseTestRunner()
{
TLLM_NCCL_CHECK(ncclCommDestroy(m_nccl_comm));
}
private:
int m_rank;
int m_world_size;
int m_message_size;
mpi::MpiComm const& m_mpi_comm;
ncclComm_t m_nccl_comm;
CudaBuffer m_allreduce_in;
CudaBuffer m_residual_in;
CudaBuffer m_residual_out;
CudaBuffer m_norm_out;
CudaBuffer m_quant_out;
CudaBuffer m_scale_out;
CudaBuffer m_rms_gamma;
CudaBuffer m_scale_factor;
std::shared_ptr<ar_fusion::Workspace> m_workspace;
ar_fusion::moe::MoeReductionAllReduceFusionParams m_params;
std::shared_ptr<tr::CudaStream> m_stream;
// * moe reduction related params
int m_max_expert_num;
CudaBuffer m_moe_reduction_scale_input;
CudaBuffer m_moe_reduction_active_experts_token_input;
CudaBuffer m_moe_reduction_token_input;
CudaBuffer m_moe_reduction_device_num_experts;
};
TEST(Kernel, MoEReduceAddARFuse)
{
auto& comm = mpi::MpiComm::world();
auto world_size = comm.getSize();
auto rank = comm.getRank();
if (world_size % 2)
{
TLLM_LOG_WARNING("world size is not a multiple of 2, return");
return;
}
int warmup = 100, iter = 100;
int hidden_dim = 7168;
std::vector<int> candidate_token_num{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048};
std::vector<int> candidate_active_expert_num{8, 12, 16};
int max_token_num = 2048;
int max_expert_num = 16;
MoEARFuseTestRunner<half> runner(max_token_num, hidden_dim, max_expert_num);
for (auto token_num : candidate_token_num)
{
for (auto act_exp_num : candidate_active_expert_num)
{
auto latency = runner.benchmark(
&MoEARFuseTestRunner<half>::run_kernel, warmup, iter, token_num, hidden_dim, act_exp_num);
runner.verify(token_num, hidden_dim, act_exp_num);
if (rank == 0)
{
TLLM_LOG_INFO("token_num %d, hidden_dim %d, act_exp_num %d, latency %fus", token_num, hidden_dim,
act_exp_num, latency);
}
auto moe_reduce_latency = runner.benchmark(
&MoEARFuseTestRunner<half>::run_moe_reduction, warmup, iter, token_num, hidden_dim, act_exp_num);
if (rank == 0)
{
TLLM_LOG_INFO("moe reduce latency %fus", moe_reduce_latency);
}
auto nccl_latency
= runner.benchmark(&MoEARFuseTestRunner<half>::run_nccl_allreduce, warmup, iter, token_num, hidden_dim);
if (rank == 0)
{
TLLM_LOG_INFO("nccl allreduce latency %fus", nccl_latency);
}
auto residual_latency
= runner.benchmark(&MoEARFuseTestRunner<half>::run_residual_add, warmup, iter, token_num, hidden_dim);
if (rank == 0)
{
TLLM_LOG_INFO("residual add latency %fus", residual_latency);
}
auto rms_latency
= runner.benchmark(&MoEARFuseTestRunner<half>::run_rms_norm, warmup, iter, token_num, hidden_dim);
if (rank == 0)
{
TLLM_LOG_INFO("rms norm latency %fus", rms_latency);
}
auto quant_latency
= runner.benchmark(&MoEARFuseTestRunner<half>::run_fp4_quant, warmup, iter, token_num, hidden_dim);
if (rank == 0)
{
TLLM_LOG_INFO("fp4 quant latency %fus", quant_latency);
auto tot_latency = moe_reduce_latency + nccl_latency + residual_latency + rms_latency + quant_latency;
TLLM_LOG_INFO("fusion kernel latency %fus, moe reduce + nccl + ops latency %fus, total speedup %fx",
latency, tot_latency, tot_latency / latency);
}
}
}
}