TensorRT-LLMs/examples/chatglm2-6b/run.py
2023-10-10 23:22:17 -07:00

150 lines
6.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import re
import torch
import transformers
import tensorrt_llm
from tensorrt_llm import runtime
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from build import get_engine_name # isort:skip
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, default=1024)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--engine_dir', type=str, default='trtModel')
parser.add_argument('--input_text', type=str, default='续写:北京市教育资源丰富')
parser.add_argument(
'--input_tokens',
type=str,
help='CSV file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--top_p', type=float, default=0.0)
return parser.parse_args()
def process_response(responseList):
for i, response in enumerate(responseList):
response = response.strip()
punkts = [
[",", ""],
["!", ""],
[":", ""],
[";", ""],
["\?", ""],
]
for item in punkts:
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0],
r"\1%s" % item[1], response)
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0],
r"%s\1" % item[1], response)
responseList[i] = response
return responseList
if __name__ == '__main__':
args = parse_arguments()
tensorrt_llm.logger.set_level(args.log_level)
config_path = os.path.join(args.engine_dir, 'config.json')
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_name = get_engine_name('chatglm2-6b', dtype, world_size,
runtime_rank)
serialize_path = os.path.join(args.engine_dir, engine_name)
tokenizer = transformers.AutoTokenizer.from_pretrained(
"./pyTorchModel", trust_remote_code=True)
input_ids = None
input_text = None
if args.input_tokens is None:
input_text = args.input_text
input_ids = tokenizer(
[input_text], return_tensors="pt",
padding=True)['input_ids'].int().contiguous().cuda()
else:
input_ids = []
with open(args.input_tokens) as f_in:
for line in f_in:
for e in line.strip().split(','):
input_ids.append(int(e))
input_text = "<ids from file>"
input_ids = torch.tensor(input_ids,
dtype=torch.int32).cuda().unsqueeze(0)
input_lengths = torch.tensor(
[input_ids.size(1) for _ in range(input_ids.size(0))]).int().cuda()
model_config = ModelConfig(model_name="chatglm6b",
num_heads=num_heads,
num_kv_heads=num_heads,
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
dtype=dtype)
sampling_config = SamplingConfig(end_id=2,
pad_id=0,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p)
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = runtime.GenerationSession(model_config, engine_buffer,
runtime_mapping)
decoder.setup(input_ids.size(0), input_ids.size(1), args.max_output_len)
output_ids = decoder.decode(input_ids, input_lengths, sampling_config)
# [output_len, batch_size, beam_width] -> [batch_size, output_len, beam_width]
output_ids = output_ids.squeeze(1)
torch.cuda.synchronize()
for i in range(len(output_ids.tolist())):
output_ids = output_ids.tolist()[i][input_ids.size(1):]
outputList = tokenizer.batch_decode(output_ids,
skip_special_tokens=True)
output_text = process_response(outputList)
print(f'***************************************')
print(f'Input --->\n {input_text}')
print(f'Output --->\n {"".join(output_text)}')
print(f'***************************************')
print("Finished!")