TensorRT-LLMs/tensorrt_llm/models/unet/pp/attention.py
Kaiyu Xie 385626572d
Update TensorRT-LLM (#2502)
* Update TensorRT-LLM

---------

Co-authored-by: 岑灿 <yunyi.hyy@alibaba-inc.com>
2024-11-26 16:51:34 +08:00

108 lines
3.5 KiB
Python
Executable File

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ....functional import allgather, split
from ....mapping import Mapping
from ....module import Module
from ..attention import CrossAttention, SelfAttention, _attention
class DistriSelfAttentionPP(Module):
def __init__(self, module: SelfAttention, mapping: Mapping = Mapping()):
super().__init__()
self.mapping = mapping
self.module = module
def forward(self, hidden_states):
mapping = self.mapping
attn = self.module
batch_size, sequence_length, _ = hidden_states.shape
qkv = attn.to_qkv(hidden_states)
query, kv = split(qkv, [attn.inner_dim, attn.inner_dim * 2], dim=2)
if mapping.tp_size == 1:
full_kv = kv
else:
full_kv = allgather(kv, group=mapping.tp_group, gather_dim=1)
key, value = split(full_kv, full_kv.shape[-1] // 2, dim=-1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view([batch_size, -1, attn.heads,
head_dim]).transpose(1, 2)
key = key.view([batch_size, -1, attn.heads, head_dim]).transpose(1, 2)
value = value.view([batch_size, -1, attn.heads,
head_dim]).transpose(1, 2)
hidden_states = _attention(query, key, value, attn.scale)
hidden_states = hidden_states.view(
[batch_size, -1, attn.heads * head_dim])
# linear proj
hidden_states = attn.to_out(hidden_states)
return hidden_states
class DistriCrossAttentionPP(Module):
def __init__(self, module: CrossAttention, mapping: Mapping = Mapping()):
super().__init__()
self.mapping = mapping
self.module = module
self.kv_cache = None
def forward(self, hidden_states, context):
attn = self.module
recompute_kv = self.kv_cache is None
if context is None:
context = hidden_states
batch_size, sequence_length, _ = context.shape
query = attn.to_q(hidden_states)
if recompute_kv or self.kv_cache is None:
kv = attn.to_kv(context)
self.kv_cache = kv
else:
kv = self.kv_cache
key, value = split(kv, kv.shape[-1] // 2, dim=-1)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view([batch_size, -1, attn.heads,
head_dim]).transpose(1, 2)
key = key.view([batch_size, -1, attn.heads, head_dim]).transpose(1, 2)
value = value.view([batch_size, -1, attn.heads,
head_dim]).transpose(1, 2)
hidden_states = _attention(query, key, value, scale=attn.scale)
hidden_states = hidden_states.view(
[batch_size, -1, attn.heads * head_dim])
# linear proj
hidden_states = attn.to_out(hidden_states)
return hidden_states