TensorRT-LLMs/tensorrt_llm/models/unet/pp/groupnorm.py
Kaiyu Xie 385626572d
Update TensorRT-LLM (#2502)
* Update TensorRT-LLM

---------

Co-authored-by: 岑灿 <yunyi.hyy@alibaba-inc.com>
2024-11-26 16:51:34 +08:00

58 lines
2.2 KiB
Python
Executable File

# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ....functional import allreduce, pow, select, stack
from ....layers import GroupNorm
from ....mapping import Mapping
from ....module import Module
class DistriGroupNorm(Module):
def __init__(self,
module: GroupNorm,
mapping: Mapping = Mapping(),
is_first_layer: bool = False):
super().__init__()
self.mapping = mapping
self.module = module
def forward(self, x, *args, **kwargs):
mapping = self.mapping
module = self.module
n, c, h, w = x.shape
num_groups = module.num_groups
group_size = c // num_groups
x = x.view([n, num_groups, group_size, h, w])
x_mean = x.mean(dim=4, keepdim=True).mean(dim=(3, 2), keepdim=True)
x2_mean = pow(x, 2.0).mean(dim=4, keepdim=True).mean(dim=(3, 2),
keepdim=True)
mean = stack([x_mean, x2_mean], dim=0)
mean = allreduce(mean, mapping.tp_group)
mean = mean / (mapping.tp_size * 1.0)
x_mean = select(mean, 0, 0)
x2_mean = select(mean, 0, 1)
var = x2_mean - pow(x_mean, 2.0)
num_elements = group_size * h * w
var = var * (num_elements / (num_elements - 1))
std = (var + module.eps).sqrt()
output = (x - x_mean) / std
output = output.view([n, c, h, w])
if module.affine:
output = output * module.weight.value.view([1, -1, 1, 1])
output = output + module.bias.value.view([1, -1, 1, 1])
return output