mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
159 lines
5.4 KiB
Python
159 lines
5.4 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
import time
|
|
import traceback
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
|
from transformers import AutoConfig
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.mapping import Mapping
|
|
from tensorrt_llm.models import Phi3ForCausalLM, PhiForCausalLM
|
|
from tensorrt_llm.models.modeling_utils import QuantConfig
|
|
from tensorrt_llm.quantization import QuantAlgo
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--model_dir', type=str, default=None)
|
|
parser.add_argument('--tp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way tensor parallelism size')
|
|
parser.add_argument('--pp_size',
|
|
type=int,
|
|
default=1,
|
|
help='N-way pipeline parallelism size')
|
|
parser.add_argument('--dtype',
|
|
type=str,
|
|
default='float16',
|
|
choices=['float32', 'bfloat16', 'float16'])
|
|
parser.add_argument(
|
|
'--use_weight_only',
|
|
default=False,
|
|
action="store_true",
|
|
help='Quantize weights for the various GEMMs to INT4/INT8.'
|
|
'See --weight_only_precision to set the precision')
|
|
parser.add_argument(
|
|
'--weight_only_precision',
|
|
const='int8',
|
|
type=str,
|
|
nargs='?',
|
|
default='int8',
|
|
choices=['int8', 'int4'],
|
|
help=
|
|
'Define the precision for the weights when using weight-only quantization.'
|
|
'You must also use --use_weight_only for that argument to have an impact.'
|
|
)
|
|
parser.add_argument('--output_dir',
|
|
type=str,
|
|
default='tllm_checkpoint',
|
|
help='The path to save the TensorRT-LLM checkpoint')
|
|
parser.add_argument(
|
|
'--workers',
|
|
type=int,
|
|
default=1,
|
|
help='The number of workers for converting checkpoint in parallel')
|
|
args = parser.parse_args()
|
|
|
|
return args
|
|
|
|
|
|
def execute(workers, func, args):
|
|
if workers == 1:
|
|
for rank, f in enumerate(func):
|
|
f(args, rank)
|
|
else:
|
|
with ThreadPoolExecutor(max_workers=workers) as p:
|
|
futures = [p.submit(f, args, rank) for rank, f in enumerate(func)]
|
|
exceptions = []
|
|
for future in as_completed(futures):
|
|
try:
|
|
future.result()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
exceptions.append(e)
|
|
assert len(
|
|
exceptions
|
|
) == 0, "Checkpoint conversion failed, please check error log."
|
|
|
|
|
|
def args_to_quant_config(args: argparse.Namespace) -> QuantConfig:
|
|
'''return config dict with quantization info based on the command line args
|
|
'''
|
|
quant_config = QuantConfig()
|
|
if args.use_weight_only:
|
|
if args.weight_only_precision == 'int8':
|
|
quant_config.quant_algo = QuantAlgo.W8A16
|
|
elif args.weight_only_precision == 'int4':
|
|
quant_config.quant_algo = QuantAlgo.W4A16
|
|
|
|
return quant_config
|
|
|
|
|
|
if __name__ == '__main__':
|
|
print(tensorrt_llm.__version__)
|
|
args = parse_arguments()
|
|
assert args.pp_size == 1, "Pipeline parallelism is not supported."
|
|
|
|
tik = time.time()
|
|
if not os.path.exists(args.output_dir):
|
|
os.makedirs(args.output_dir)
|
|
|
|
model_config = AutoConfig.from_pretrained(args.model_dir,
|
|
trust_remote_code=True)
|
|
model_type = model_config.architectures[0]
|
|
supported_models = [
|
|
'PhiForCausalLM', 'Phi3ForCausalLM', 'Phi3VForCausalLM',
|
|
'Phi3SmallForCausalLM'
|
|
]
|
|
|
|
if model_type not in supported_models:
|
|
assert False, "Invalid model type"
|
|
|
|
phi_model = Phi3ForCausalLM if model_type.find(
|
|
'Phi3') != -1 else PhiForCausalLM
|
|
|
|
hf_model = None
|
|
|
|
override_fields = {}
|
|
# override_fields.update(args_to_build_options(args))
|
|
quant_config = args_to_quant_config(args)
|
|
|
|
def convert_and_save_rank(args, rank):
|
|
mapping = Mapping(world_size=args.tp_size * args.pp_size,
|
|
rank=rank,
|
|
tp_size=args.tp_size,
|
|
pp_size=args.pp_size)
|
|
|
|
phi = phi_model.from_hugging_face(
|
|
args.model_dir if hf_model is None else hf_model,
|
|
args.dtype,
|
|
mapping=mapping,
|
|
quant_config=quant_config,
|
|
**override_fields,
|
|
)
|
|
phi.save_checkpoint(args.output_dir, save_config=(rank == 0))
|
|
del phi
|
|
|
|
execute(args.workers, [convert_and_save_rank] * args.tp_size * args.pp_size,
|
|
args)
|
|
|
|
tok = time.time()
|
|
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
|
|
print(f'Total time of converting checkpoints: {t}')
|