TensorRT-LLMs/tensorrt_llm/bench/run/utils.py
2024-08-29 17:25:07 +08:00

134 lines
4.3 KiB
Python

from __future__ import annotations
import json
from collections import defaultdict
from pathlib import Path
from typing import Dict, Tuple, Union
import tensorrt_llm.bindings.executor as trtllm
from tensorrt_llm.bench.run.dataclasses import (BenchmarkStatistics,
PercentileStats, RequestStats,
ResponseRecord)
from tensorrt_llm.bindings import InferenceRequest
def get_executor_request(request: InferenceRequest,
pad_id: int,
eos_id: int,
streaming: bool = False) -> trtllm.Request:
return trtllm.Request(
input_token_ids=request.logits,
max_new_tokens=request.output_tokens,
stop_words=[],
bad_words=[],
streaming=streaming,
output_config=trtllm.OutputConfig(exclude_input_from_output=True),
pad_id=pad_id,
end_id=eos_id,
)
def get_settings_from_engine(
engine_path: Path
) -> Tuple[Dict[str, Union[str, int]], Dict[str, Union[str, int]]]:
config_path = engine_path / "config.json"
runtime_config = {}
with open(config_path, "r") as config_json:
config = json.load(config_json)
engine_world_map = config["pretrained_config"]["mapping"]
engine_build_cfg = config["build_config"]
engine_parallel_map = engine_build_cfg["auto_parallel_config"]
world_config = {
"pp_size": engine_world_map["pp_size"],
"tp_size": engine_world_map["tp_size"],
"world_size": engine_world_map["world_size"],
"gpus_per_node": engine_parallel_map["gpus_per_node"],
}
executor_settings = {
"max_batch_size": engine_build_cfg["max_batch_size"],
"max_num_tokens": engine_build_cfg["max_num_tokens"],
}
runtime_config.update({
"sw_version": config["version"],
"engine_dir": str(engine_path.absolute()),
"settings_config": executor_settings,
"world_config": world_config,
})
return runtime_config, engine_build_cfg
class StatsKeeper:
def __init__(self) -> None:
self.requests: RequestStats = {}
self.num_complete: int = 0
self._unseen_cache = defaultdict(list)
def register_request(
self,
request_id: int,
timestamp: float,
num_tokens: int,
) -> None:
request = RequestStats(request_id=request_id, input_tokens=num_tokens)
request.register_event(False, False, timestamp, 0)
self.requests[request_id] = request
def register_response(self, response: ResponseRecord) -> None:
request_id = response.request_id
if request_id not in self.requests:
self._unseen_cache[request_id].append(response)
else:
self.requests[request_id].register_event(
is_error=response.has_error,
is_response=True,
timestamp=response.timestamp,
num_tokens=len(response.output_tokens))
if response.is_final:
self.num_complete += 1
def generate_statistics_summary(self) -> None:
total_output_tokens: int = 0
total_input_tokens: int = 0
num_requests = len(self.requests)
total_request_latency: float = 0.0
start_time = float("inf")
end_time = -1
request_latencies = []
last_queue_time = 0.0
queue_time_total = 0.0
for entry in self.requests.values():
entry.time_log.sort()
queue_time_total += entry.time_log[0] - last_queue_time
last_queue_time = entry.time_log[0]
request_latencies.append(entry.request_latency)
total_output_tokens += entry.num_tokens
total_input_tokens += entry.input_tokens
total_request_latency += entry.request_latency
start_time = min(start_time, entry.time_log[0])
end_time = max(end_time, entry.time_log[-1])
stats = BenchmarkStatistics(
num_requests=num_requests,
total_latency_ns=end_time - start_time,
total_output_tokens=total_output_tokens,
total_input_tokens=total_input_tokens,
request_percentiles=PercentileStats.from_iterable(
request_latencies),
issue_rate_ns=queue_time_total / num_requests)
return stats