TensorRT-LLMs/tensorrt_llm/executor.py
2024-08-29 17:25:07 +08:00

816 lines
28 KiB
Python

import asyncio
import atexit
import datetime
import json
import math
import secrets
import threading
import time
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from multiprocessing.connection import Client, Listener
from pathlib import Path
from queue import Queue
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
import numpy as np
import torch
from janus import Queue as AsyncQueue
from ._utils import mpi_rank, mpi_world_size
from .bindings import executor as tllm
from .builder import Engine
from .hlapi.mpi_session import (MpiPoolSession, MpiSession,
external_mpi_comm_available, find_free_port,
need_spawn_mpi_workers)
from .hlapi.utils import (ContextManager, SamplingParams, exception_handler,
print_traceback_on_error)
def has_event_loop() -> bool:
try:
asyncio.get_running_loop()
except RuntimeError:
return False
return True
class GenerationRequest:
def __init__(
self,
prompt_token_ids: Union[torch.Tensor, np.ndarray, list],
sampling_params: SamplingParams,
streaming: bool = False,
):
if isinstance(prompt_token_ids, list):
self.prompt_token_ids = prompt_token_ids
elif isinstance(prompt_token_ids, (torch.Tensor, np.ndarray)):
self.prompt_token_ids = prompt_token_ids.tolist()
else:
raise TypeError(
f"prompt_token_ids ({prompt_token_ids}) should be an instance of torch.Tensor, np.ndarray or list"
)
self.sampling_params = sampling_params
self.streaming = streaming
self.id = -1
def set_id(self, id):
self.id = id
return self
def as_executor_request(self) -> tllm.Request:
request_kwargs = {
"input_token_ids":
self.prompt_token_ids,
"max_new_tokens":
self.sampling_params.max_new_tokens,
"streaming":
self.streaming,
"sampling_config":
self.sampling_params._get_sampling_config(),
"end_id":
self.sampling_params.end_id,
"pad_id":
self.sampling_params.pad_id,
"output_config":
self.sampling_params._get_output_config(),
# The following options in the Executor API are not yet exposed by the HLAPI:
# https://jirasw.nvidia.com/browse/TRTLLM-489
"bad_words":
self.sampling_params._get_bad_words(),
"stop_words":
self.sampling_params._get_stop_words(),
"embedding_bias":
self.sampling_params.embedding_bias,
"external_draft_tokens_config":
self.sampling_params.external_draft_tokens_config,
"prompt_tuning_config":
self.sampling_params.prompt_tuning_config,
"lora_config":
self.sampling_params.lora_config,
"logits_post_processor_name":
self.sampling_params.logits_post_processor_name,
}
request = tllm.Request(**request_kwargs)
return request
@dataclass(slots=True)
class CompletionOutput:
"""The output data of one completion output of a request.
Args:
index (int): The index of the output in the request.
text (str): The generated output text.
token_ids (List[int]): The token ids of the generated output text.
cumulative_logprob (float): The cumulative log probability of the generated output text.
logprobs (List[float]): The log probabilities of the top probability words at each position if the logprobs are requested.
generation_logits (torch.Tensor): The logits on the generated output token ids.
"""
index: int
text: str = ""
token_ids: List[int] = field(default_factory=list)
cumulative_logprob: Optional[float] = None
logprobs: List[float] = field(default_factory=list)
generation_logits: Optional[torch.Tensor] = field(default=None, repr=False)
_last_text: str = field(default="", init=False, repr=False)
@property
def length(self):
return len(self.token_ids)
@property
def text_diff(self) -> str:
diff = self.text[len(self._last_text):]
self._last_text = self.text
return diff
class GenerationResult:
def __init__(self, generation_request: GenerationRequest) -> None:
self._done = False
self._cancelled = False
self._generation_request = generation_request
if has_event_loop():
aqueue = AsyncQueue()
self.queue = aqueue.sync_q
self.aqueue = aqueue.async_q
else:
self.queue = Queue()
self.aqueue = None
self.outputs: List[CompletionOutput] = [
CompletionOutput(i) for i in range(self.beam_width)
]
self.context_logits: Optional[torch.Tensor] = None
@property
def request_id(self) -> int:
return self._generation_request.id
@property
def prompt_token_ids(self) -> List[int]:
return self._generation_request.prompt_token_ids
@property
def finished(self) -> bool:
return self._done
@property
def streaming(self):
return self._generation_request.streaming
@property
def beam_width(self):
return self._generation_request.sampling_params.beam_width
def handle_generation_msg(self, tensors: tuple, error: str):
if error:
raise RuntimeError(error)
output_token_ids, context_logits, generation_logits, log_probs, cum_log_probs = tensors
for i, beam_ids in enumerate(output_token_ids):
self.outputs[i].token_ids.extend(beam_ids)
if cum_log_probs is not None:
self.outputs[i].cumulative_logprob = cum_log_probs[i]
if log_probs is not None:
self.outputs[i].logprobs = log_probs[i]
assert len(self.outputs[i].logprobs) == self.outputs[i].length
if generation_logits is not None:
self.outputs[i].generation_logits = generation_logits[
i, :self.outputs[i].length]
if self.finished and not self._generation_request.sampling_params.include_stop_str_in_output:
for beam_output in self.outputs:
for stop_ids in self._generation_request.sampling_params._get_stop_words(
):
if beam_output.token_ids[-len(stop_ids):] == stop_ids:
beam_output.token_ids = beam_output.token_ids[:-len(
stop_ids)]
break
if context_logits is not None:
self.context_logits = context_logits
def result_step(self, timeout: Optional[float] = None):
_, tensors, self._done, error = self.queue.get(timeout=timeout)
self.handle_generation_msg(tensors, error)
async def aresult_step(self):
assert self.aqueue is not None, "The asyncio event loop was not present during initialization, so async operations are not available."
_, tensors, self._done, error = await self.aqueue.get()
self.handle_generation_msg(tensors, error)
def result(self, timeout: Optional[float] = None) -> "GenerationResult":
while not self._done:
self.result_step(timeout)
return self
async def aresult(self) -> "GenerationResult":
while not self._done:
await self.aresult_step()
return self
def __await__(self):
return self.aresult().__await__()
def __iter__(self):
return self
def __next__(self):
if self._done:
raise StopIteration
self.result_step()
return self
def __aiter__(self):
return self
async def __anext__(self):
if self._done:
raise StopAsyncIteration
await self.aresult_step()
return self
def running(self) -> bool:
return not self._done
def cancelled(self) -> bool:
return self._cancelled
def cancel(self):
raise NotImplementedError
def done(self) -> bool:
return self._done
def exception(self, timeout: Optional[float] = None):
try:
self.result(timeout)
except RuntimeError as e:
return e
def _repr_fields(self):
return ['request_id', 'prompt_token_ids', 'outputs', 'finished']
def __repr__(self) -> str:
repr = []
for field in self._repr_fields():
value = getattr(self, field)
if isinstance(value, str):
repr.append(f"{field}={value!r}")
else:
repr.append(f"{field}={value}")
repr = ", ".join(repr)
repr = f"{self.__class__.__name__}({repr})"
return repr
def __hash__(self):
return hash(self.request_id)
class GenerationExecutor(ABC):
TERMINATE_REQUEST_ID = 0
def __init__(self):
self.id_counter = GenerationExecutor.TERMINATE_REQUEST_ID + 1
self._stats = None
self.stats_queue = None
exception_handler.register(self)
atexit.register(self.shutdown)
def generate_id(self) -> int:
gen_id = self.id_counter
# underlying C type is uint64
uint64_max = 2**64 - 1
self.id_counter = (self.id_counter + 1) % uint64_max
if self.id_counter == GenerationExecutor.TERMINATE_REQUEST_ID:
self.id_counter += 1
return gen_id
@abstractmethod
def submit(self, request: GenerationRequest) -> GenerationResult:
pass
def generate_async(
self,
prompt_token_ids: List[int],
sampling_params: SamplingParams,
streaming: bool = False,
) -> GenerationResult:
"""Generate output for the given prompt token ids in the asynchronous mode.
Asynchronous generation accepts single prompt only.
"""
assert isinstance(prompt_token_ids[0], int)
assert isinstance(sampling_params, SamplingParams)
result = self.submit(
GenerationRequest(prompt_token_ids,
sampling_params=sampling_params,
streaming=streaming))
return result
def generate(
self, prompt_token_ids: Union[List[int], List[List[int]]],
sampling_params: Union[SamplingParams, List[SamplingParams]]
) -> Union[GenerationResult, List[GenerationResult]]:
"""Generate output for the given prompt token ids in the synchronous mode.
Synchronous generation accepts either single prompt or batched prompts.
"""
unbatched = isinstance(prompt_token_ids[0], int)
if unbatched:
prompt_token_ids = [prompt_token_ids]
futures = []
for i, p in enumerate(prompt_token_ids):
if isinstance(sampling_params, list):
sp = sampling_params[i]
else:
sp = sampling_params
future = self.generate_async(p, sampling_params=sp, streaming=False)
futures.append(future)
for future in futures:
future.result()
if unbatched:
futures = futures[0]
return futures
@abstractmethod
def shutdown(self):
pass
def create_stats_queue(self):
# Stats queue is created during first submission to ensure event loop exists if it is needed.
if not self._stats:
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
def get_stats(self):
return self.stats_queue.get()
async def aget_stats(self):
assert self.stats_aqueue is not None, "The asyncio event loop was not present during initialization, so async operations are not available."
return await self.stats_aqueue.get()
@staticmethod
def create(
engine: Union[Path, Engine],
executor_config: tllm.ExecutorConfig = tllm.ExecutorConfig(1),
model_world_size: int = 1,
world_size: int = 0,
mpi_session: Optional[MpiSession] = None,
reuse_mpi_comm: bool = False,
) -> Union["ExecutorBindingsProxy", "ExecutorBindingsWorker"]:
if world_size == 0:
world_size = mpi_world_size()
if world_size > 1 and world_size < model_world_size:
raise RuntimeError(
"Cannot instantiate Generator for engine built "
f"for {model_world_size} ranks, while currently running "
f"on {world_size} ranks.")
worker_kwargs = {
"engine": engine,
"executor_config": executor_config,
}
# The case where the Python main process is launched by mpirun
mpirun_launch = external_mpi_comm_available(model_world_size)
# The case where the Python main process utilizes mpi4py to spawn MPI workers
spawn_workers = need_spawn_mpi_workers(model_world_size)
if spawn_workers or (mpirun_launch and reuse_mpi_comm):
if reuse_mpi_comm:
assert mpi_session is not None, "reuse_mpi_comm requires an external MPI session"
return ExecutorBindingsProxy(worker_kwargs,
model_world_size=model_world_size,
mpi_session=mpi_session)
return ExecutorBindingsWorker(**worker_kwargs)
class ExecutorBindingsWorker(GenerationExecutor):
class WorkerExit(GeneratorExit):
pass
def __init__(
self,
engine: Union[Path, Engine],
executor_config: tllm.ExecutorConfig = tllm.ExecutorConfig(1),
) -> None:
super().__init__()
self.engine = None
self._results: Dict[int, GenerationResult] = {}
self._pending: set = set()
self.result_queue = None
self.rank = mpi_rank()
if isinstance(engine, Engine):
self.engine = tllm.Executor(engine.engine,
json.dumps(engine.config.to_dict()),
tllm.ModelType.DECODER_ONLY,
executor_config=executor_config)
else:
self.engine = tllm.Executor(engine,
tllm.ModelType.DECODER_ONLY,
executor_config=executor_config)
self.awaiter_stop_event = threading.Event()
self.awaiter_thread = threading.Thread(target=self.awaiter_loop,
daemon=True)
self.stats_thread = threading.Thread(target=self.stats_loop,
daemon=True)
def create_stats_queue(self):
# Stats queue is created during first submission to ensure event loop exists if it is needed.
if not self._stats:
if has_event_loop():
self._stats = AsyncQueue()
self.stats_queue = self._stats.sync_q
self.stats_aqueue = self._stats.async_q
else:
self._stats = Queue()
self.stats_queue = self._stats
self.stats_aqueue = None
def set_result_queue(self, queue):
"""In multi-gpu mode, result_queue will be set here to communicate between the proxy and the worker 0 process."""
self.result_queue = queue
def set_stats_queue(self, queue):
"""In multi-gpu mode, stats_queue will be set here to communicate between the proxy and the worker 0 process."""
self._stats = queue
self.stats_queue = self._stats
self.stats_aqueue = None
def return_queue(self, req_id: int):
""" If a centralized result queue is registered (used for communication with the proxy)
send the message there.
Otherwise, push the result directly in the GenerationResult queue.
"""
if self.result_queue is not None:
return self.result_queue
return self._results[req_id].queue
def start_awaiter_thread(self):
if self.engine.can_enqueue_requests(
) and not self.awaiter_thread.is_alive():
self.awaiter_thread.start()
def start_stats_thread(self):
if self.engine.can_enqueue_requests(
) and not self.stats_thread.is_alive():
self.stats_thread.start()
def awaiter_loop(self):
""" Gets responses from executor and places in the return queue."""
while not self.awaiter_stop_event.is_set():
# Get responses and place in queue.
for response in self.engine.await_responses(
timeout=datetime.timedelta(milliseconds=100)):
req_id = response.request_id
# If the req_id is not returned from enqueue_request in the main thread, wait.
# TODO[chunweiy]: use a pending list instead.
sleep_interval = 0.01
repeat_for_wait = math.ceil(
2 /
sleep_interval) # We will wait for 2s for a single req_id
if req_id not in self._results:
for i in range(repeat_for_wait):
time.sleep(sleep_interval)
if req_id in self._results:
break
else:
if req_id not in self._results:
raise RuntimeError(
f"Request ID {req_id} not found in the results queue."
)
queue = self.return_queue(req_id)
if response.has_error():
queue.put((req_id, None, None, response.error_msg))
else:
tensors = (
response.result.output_token_ids,
response.result.context_logits,
response.result.generation_logits,
response.result.log_probs,
response.result.cum_log_probs,
)
queue.put((response.request_id, tensors,
response.result.is_final, None))
# If the response is final or has an error, drop it from the registries.
if response.has_error() or response.result.is_final:
self._pending.remove(req_id)
self._results.pop(req_id)
def stats_loop(self):
while not self.awaiter_stop_event.is_set():
time.sleep(0.1)
# Get stats and place in queue.
for stats in self.engine.get_latest_iteration_stats():
while hasattr(self.stats_queue,
"full") and self.stats_queue.full():
self.stats_queue.get()
self.stats_queue.put(stats.to_json_str())
def start(self):
self.create_stats_queue()
self.start_awaiter_thread()
self.start_stats_thread()
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
"""
self.start()
if self.rank != 0:
raise NotImplementedError("Only rank 0 can submit requests.")
req_id = self.engine.enqueue_request(request.as_executor_request())
request.set_id(req_id)
result = GenerationResult(request)
self._results[req_id] = result
self._pending.add(req_id)
return result
def shutdown(self):
if self.engine is not None:
self.awaiter_stop_event.set()
if self.engine.can_enqueue_requests():
if self.awaiter_thread.is_alive():
self.awaiter_thread.join()
if self.stats_thread.is_alive():
self.stats_thread.join()
self.engine.shutdown()
self.engine = None
def block_subordinates(self):
if self.rank != 0:
self.shutdown()
raise self.WorkerExit(
"block_subordinates() should be used in a `with ExecutorBindingsWorker() as ...:` block"
)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback) -> bool:
self.shutdown()
return exc_type is None or exc_type == ExecutorBindingsWorker.WorkerExit
def __del__(self):
self.shutdown()
def wait_first_completed(
self, futures: List[GenerationResult]
) -> Generator[GenerationResult, None, None]:
wait_set = set(futures)
# clear already-finished requests
for f in futures:
if f._done:
wait_set.pop(f)
yield f
# wait remaining active requests
while len(wait_set) > 0:
fut = wait_set.pop()
if fut.request_id not in self._pending:
yield fut
else:
wait_set.add(fut)
class Fifo:
def __init__(self, address: Tuple[str, int, bytes], *, is_server: bool):
self.address, self.authkey = (address[0], address[1]), address[2]
self.is_server = is_server
self.conn = None
if is_server:
self.listener = Listener(self.address,
'AF_INET',
authkey=self.authkey)
def setup(self):
if self.is_server:
self.conn = self.listener.accept()
else:
self.conn = Client(self.address, authkey=self.authkey)
def put(self, obj: Any):
if self.conn is None:
self.setup()
self.conn.send(obj)
def get(self) -> Any:
if self.conn is None:
self.setup()
return self.conn.recv()
class ExecutorBindingsProxy(GenerationExecutor):
def __init__(
self,
workers_kwargs,
model_world_size: int = 1,
mpi_session: Optional[MpiSession] = None,
) -> None:
super().__init__()
self.workers_started = False
request_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_queue = Fifo(request_queue_addr, is_server=True)
# Return request id back to dispatcher
request_id_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.request_id_queue = Fifo(request_id_queue_addr, is_server=True)
result_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.result_queue = Fifo(result_queue_addr, is_server=True)
stats_queue_addr = ("127.0.0.1", find_free_port(),
secrets.token_bytes(512))
self.mp_stats_queue = Fifo(stats_queue_addr, is_server=True)
self._results: Dict[int, GenerationResult] = {}
self._request_id_dispatcher_queue = Queue()
if mpi_session is None:
self.mpi_session = MpiPoolSession(n_workers=model_world_size)
else:
self.mpi_session = mpi_session
self.model_world_size = model_world_size
self.workers_kwargs = workers_kwargs
self.workers_kwargs.update({
"request_queue_addr": request_queue_addr,
"request_id_queue_addr": request_id_queue_addr,
"result_queue_addr": result_queue_addr,
"stats_queue_addr": stats_queue_addr,
})
self.workers_init_ok = False
self.dispatcher = threading.Thread(target=self.dispatcher_thread,
daemon=True)
self.stats_thread = threading.Thread(target=self.stats_main,
daemon=True)
@print_traceback_on_error
@staticmethod
def workers_main(
engine: Union[Path, Engine],
request_queue_addr: Tuple[str, int, bytes],
request_id_queue_addr: Tuple[str, int, bytes],
result_queue_addr: Tuple[str, int, bytes],
stats_queue_addr: Tuple[str, int, bytes],
executor_config: tllm.ExecutorConfig = tllm.ExecutorConfig(1)
) -> None:
result_queue = None
if mpi_rank() == 0:
request_queue = Fifo(request_queue_addr, is_server=False)
request_id_queue = Fifo(request_id_queue_addr, is_server=False)
result_queue = Fifo(result_queue_addr, is_server=False)
mp_stats_queue = Fifo(stats_queue_addr, is_server=False)
# Only the failure on rank0 can be captured here. All the non-rank0 process will hang once the executor runtime
# is successfully initialized, that is controlled within cpp runtime.
# To capture the failure on all the ranks, more work should be done in the cpp runtime.
# TODO[chunweiy]: fix the non-rank0 process failure
init_ok = True
try:
executor = ExecutorBindingsWorker(engine, executor_config)
except Exception as e:
init_ok = False
raise e
finally:
if mpi_rank() == 0:
result_queue.put(init_ok)
with ContextManager(executor) as executor:
if mpi_rank() == 0:
executor.set_result_queue(result_queue)
executor.set_stats_queue(mp_stats_queue)
while (req := request_queue.get()) is not None:
result = executor.submit(req)
request_id_queue.put(result.request_id)
result_queue.put(None)
mp_stats_queue.put(None)
else:
executor.block_subordinates()
def dispatcher_thread(self):
""" Collect centralized results from result queue and dispatch them in the
correct GenerationResult queues. """
while (res := self.result_queue.get()) is not None:
req_id, *_ = res
# Wait for this result ready in self._results
# This will make sure that the self._results[req_id] is ready to receive the result.
while req_id not in self._results:
self._request_id_dispatcher_queue.get()
self._results[req_id].queue.put(res)
# Drop the record if the result is final.
if res[2]:
self._results.pop(req_id)
while not self._request_id_dispatcher_queue.empty():
self._request_id_dispatcher_queue.get()
def stats_main(self):
while (stats := self.mp_stats_queue.get()) is not None:
time.sleep(0.1)
while self.stats_queue.full():
self.stats_queue.get()
self.stats_queue.put(stats)
def start(self):
self.mpi_futures = self.mpi_session.submit(
ExecutorBindingsProxy.workers_main, **self.workers_kwargs)
self.workers_started = True
self.workers_init_ok = self.result_queue.get()
if not self.workers_init_ok:
raise RuntimeError("worker initialization failed")
self.dispatcher.start()
self.create_stats_queue()
self.stats_thread.start()
def shutdown(self):
if not self.workers_started:
return
if self.workers_init_ok:
self.request_queue.put(None)
for f in self.mpi_futures:
f.result()
if self.dispatcher.is_alive():
self.result_queue.put(None)
self.dispatcher.join()
if self.stats_thread.is_alive():
self.mp_stats_queue.put(None)
self.stats_thread.join()
self.workers_started = False
def submit(self, request: GenerationRequest) -> GenerationResult:
"""
Low-level API to the executor. Return a "future" GenerationResult which can be waited.
Forwards the request to the workers through the request queue.
"""
if not self.workers_started:
self.start()
self.request_queue.put(request)
# Await req id.
req_id = self.request_id_queue.get()
request.set_id(req_id)
result = GenerationResult(request)
self._results[req_id] = result
self._request_id_dispatcher_queue.put(req_id)
return result
def __del__(self):
self.shutdown()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
self.shutdown()
return False