TensorRT-LLMs/tensorrt_llm/hlapi/build_cache.py
2024-07-17 20:45:02 +08:00

300 lines
10 KiB
Python

import contextlib
import datetime
import enum
import hashlib
import json
import os
import shutil
from dataclasses import dataclass
from pathlib import Path
from typing import Any, List, Optional
import filelock
import tensorrt_llm
from tensorrt_llm.hlapi.llm_utils import BuildConfig
from tensorrt_llm.logger import logger
def get_build_cache_config_from_env() -> tuple[bool, str]:
"""
Get the build cache configuration from the environment variables
"""
build_cache_enabled = os.environ.get('TLLM_HLAPI_BUILD_CACHE') == '1'
build_cache_root = os.environ.get(
'TLLM_HLAPI_BUILD_CACHE_ROOT',
'/tmp/.cache/tensorrt_llm/hlapi/') # nosec B108
return build_cache_enabled, build_cache_root
class BuildCacheConfig:
"""
Configuration for the build cache.
Attributes:
cache_root (str): The root directory for the build cache.
max_records (int): The maximum number of records to store in the cache.
max_cache_storage_gb (float): The maximum amount of storage (in GB) to use for the cache.
"""
def __init__(self,
cache_root: Optional[Path] = None,
max_records: int = 10,
max_cache_storage_gb: float = 256):
self._cache_root = cache_root
self._max_records = max_records
self._max_cache_storage_gb = max_cache_storage_gb
@property
def cache_root(self) -> Path:
_build_cache_enabled, _build_cache_root = get_build_cache_config_from_env(
)
return self._cache_root or Path(_build_cache_root)
@property
def max_records(self) -> int:
return self._max_records
@property
def max_cache_storage_gb(self) -> float:
return self._max_cache_storage_gb
class BuildCache:
"""
The BuildCache class is a class that manages the intermediate products from the build steps.
NOTE: currently, only engine-building is supported
TODO[chunweiy]: add support for other build steps, such as quantization, convert_checkpoint, etc.
"""
# The version of the cache, will be used to determine if the cache is compatible
CACHE_VERSION = 0
def __init__(self, config: Optional[BuildCacheConfig] = None):
_, default_cache_root = get_build_cache_config_from_env()
config = config or BuildCacheConfig()
self.cache_root = config.cache_root or Path(default_cache_root)
self.max_records = config.max_records
self.max_cache_storage_gb = config.max_cache_storage_gb
if config.max_records < 1:
raise ValueError("max_records should be greater than 0")
def get_engine_building_cache_stage(self,
build_config: BuildConfig,
model_path: Optional[Path] = None,
**kwargs) -> 'CachedStage':
'''
Get the build step for engine building.
'''
from tensorrt_llm.hlapi.llm_utils import \
_ModelFormatKind # avoid cyclic import
force_rebuild = False
if parallel_config := kwargs.get('parallel_config'):
if parallel_config.auto_parallel:
force_rebuild = True
if model_format := kwargs.get('model_format'):
if model_format is not _ModelFormatKind.HF:
force_rebuild = True
build_config_str = BuildCache.prune_build_config_for_cache_key(
build_config.to_dict())
return CachedStage(parent=self,
kind=CacheRecord.Kind.Engine,
cache_root=self.cache_root,
force_rebuild=force_rebuild,
inputs=[build_config_str, model_path, kwargs])
def prune_caches(self, has_incoming_record: bool = False):
'''
Clean up the cache records to make sure the cache size is within the limit
Args:
has_incoming_record (bool): If the cache has incoming record, the existing records will be further pruned to
reserve space for the incoming record
'''
if not self.cache_root.exists():
return
self._clean_up_cache_dir()
records = []
for dir in self.cache_root.iterdir():
records.append(self._load_cache_record(dir))
records.sort(key=lambda x: x.time, reverse=True)
max_records = self.max_records - 1 if has_incoming_record else self.max_records
# prune the cache to meet max_records and max_cache_storage_gb limitation
while len(records) > max_records or sum(
r.storage_gb for r in records) > self.max_cache_storage_gb:
record = records.pop()
# remove the directory and its content
shutil.rmtree(record.path)
@staticmethod
def prune_build_config_for_cache_key(build_config: dict) -> dict:
# The BuildCache will be disabled once auto_pp is enabled, so 'auto_parallel_config' should be removed
black_list = ['auto_parallel_config', 'dry_run']
dic = build_config.copy()
for key in black_list:
if key in dic:
dic.pop(key)
return dic
def load_cache_records(self) -> List["CacheRecord"]:
'''
Load all the cache records from the cache directory
'''
records = []
if not self.cache_root.exists():
return records
for dir in self.cache_root.iterdir():
records.append(self._load_cache_record(dir))
return records
def _load_cache_record(self, cache_dir) -> "CacheRecord":
'''
Get the cache record from the cache directory
'''
metadata = json.loads((cache_dir / 'metadata.json').read_text())
storage_gb = sum(f.stat().st_size for f in cache_dir.glob('**/*')
if f.is_file()) / 1024**3
return CacheRecord(kind=CacheRecord.Kind.__members__[metadata['kind']],
storage_gb=storage_gb,
path=cache_dir,
time=datetime.datetime.fromisoformat(
metadata['datetime']))
def _clean_up_cache_dir(self):
'''
Clean up the files in the cache directory, remove anything that is not in the cache
'''
# get all the files and directies in the cache_root
if not self.cache_root.exists():
return
for file_or_dir in self.cache_root.iterdir():
if not self.is_cache_valid(file_or_dir):
logger.info(f"Removing invalid cache directory {dir}")
if file_or_dir.is_file():
file_or_dir.unlink()
else:
shutil.rmtree(file_or_dir)
def is_cache_valid(self, cache_dir: Path) -> bool:
'''
Check if the cache directory is valid
'''
if not cache_dir.exists():
return False
metadata_path = cache_dir / 'metadata.json'
if not metadata_path.exists():
return False
metadata = json.loads(metadata_path.read_text())
if metadata.get('version') != BuildCache.CACHE_VERSION:
return False
content = cache_dir / 'content'
if not content.exists():
return False
return True
@dataclass
class CachedStage:
'''
CachedStage is a class that represents a stage in the build process, it helps to manage the intermediate product.
The cache is organized as follows:
this_cache_dir/ # name is like "engine-<hash>"
metadata.json # the metadata of the cache
content/ # the actual product of the build step, such trt-llm engine directory
'''
# The parent should be kept alive by CachedStep instance
parent: BuildCache
cache_root: Path
# The inputs will be used to determine if the step needs to be re-run, so all the variables should be put here
inputs: List[Any]
kind: "CacheRecord.Kind"
# If force_rebuild is set to True, the cache will be ignored
force_rebuild: bool = False
def get_hash_key(self):
lib_version = tensorrt_llm.__version__
input_strs = [str(i) for i in self.inputs]
return hashlib.md5(
f"{lib_version}-{input_strs}".encode()).hexdigest() # nosec B324
def get_cache_path(self) -> Path:
'''
The path to the product of the build step, will be overwritten if the step is re-run
'''
return self.cache_root / f"{self.kind.value}-{self.get_hash_key()}"
def get_engine_path(self) -> Path:
return self.get_cache_path() / 'content'
def get_cache_metadata(self) -> dict:
res = {
"version": BuildCache.CACHE_VERSION,
"datetime": datetime.datetime.now().isoformat(),
"kind": self.kind.name,
}
return res
def cache_hitted(self) -> bool:
'''
Check if the product of the build step is in the cache
'''
if self.force_rebuild:
return False
try:
if self.get_cache_path().exists():
metadata = json.loads(
(self.get_cache_path() / 'metadata.json').read_text())
if metadata["version"] == BuildCache.CACHE_VERSION:
return True
except:
pass
return False
@contextlib.contextmanager
def write_guard(self):
'''
Write the filelock to indicate that the build step is in progress
'''
self.parent.prune_caches(has_incoming_record=True)
target_dir = self.get_cache_path()
target_dir.mkdir(parents=True, exist_ok=True)
# TODO[chunweiy]: deal with the cache modification conflict
lock = filelock.FileLock(target_dir / '.filelock', timeout=10)
with open(target_dir / 'metadata.json', 'w') as f:
f.write(json.dumps(self.get_cache_metadata()))
lock.__enter__()
yield target_dir / 'content'
lock.__exit__(None, None, None)
@dataclass(unsafe_hash=True)
class CacheRecord:
'''
CacheRecord is a class that represents a record in the cache directory.
'''
class Kind(enum.Enum):
Engine = 'engine'
Checkpoint = 'checkpoint'
kind: Kind
storage_gb: float
path: Path
time: datetime.datetime