TensorRT-LLMs/cpp/tensorrt_llm/runtime/rnnStateBuffers.h
Dan Blanaru 16d2467ea8 Update TensorRT-LLM (#2755)
* Update TensorRT-LLM

---------

Co-authored-by: Denis Kayshev <topenkoff@gmail.com>
Co-authored-by: akhoroshev <arthoroshev@gmail.com>
Co-authored-by: Patrick Reiter Horn <patrick.horn@gmail.com>

Update
2025-02-11 03:01:00 +00:00

97 lines
3.6 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/common.h"
#include "tensorrt_llm/runtime/generationConfig.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include "tensorrt_llm/runtime/modelConfig.h"
#include "tensorrt_llm/runtime/tllmRuntime.h"
#include "tensorrt_llm/runtime/worldConfig.h"
namespace tensorrt_llm::runtime
{
class RuntimeBuffers;
class RnnStateBuffers
{
public:
using TensorPtr = ITensor::SharedPtr;
using TensorMap = StringPtrMap<ITensor>;
TensorPtr rnnStates; // [layer_count * batch_beam, state_size, rnn_hidden_size]
TensorPtr convStates; // [layer_count * batch_beam, conv_kernel - 1, rnn_hidden_size]
TensorPtr convStatesAlt; // [layer_count * batch_beam, conv_kernel - 1, rnn_hidden_size]
std::vector<TensorPtr> rnnState; // [batch_beam, state_size, rnn_hidden_size] or
// [batch_beam, num_heads, rnn_hidden_size, rnn_head_size]
std::vector<TensorPtr> convState; // [batch_beam, conv_kernel - 1, rnn_hidden_size]
std::vector<TensorPtr> convStateAlt; // [batch_beam, conv_kernel - 1, rnn_hidden_size]
TensorPtr slotMappingHost; // [batch_size]
TensorPtr slotMappingDevice; // [batch_size]
TensorPtr rnnStatePtrs; // [layer_count]
TensorPtr convStatePtrs; // [layer_count]
std::vector<TensorPtr> rnnStatePtr; // [1]
std::vector<TensorPtr> convStatePtr; // [1]
RnnStateBuffers();
RnnStateBuffers(
TllmRuntime const& runtime, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig);
void reshape(SizeType32 batchSize);
void reshape(
GenerationConfig const& generationConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
void reset(BufferManager& manager);
RnnStateBuffers sliceTo(SizeType32 offset, SizeType32 size);
void prepareContextStep(RuntimeBuffers* runtimeBuffers, BufferManager& manager);
void postContextStep(RuntimeBuffers* runtimeBuffers, std::vector<RuntimeBuffers> const& contextBuffers,
BufferManager& manager, ModelConfig const& modelConfig, WorldConfig const& worldConfig);
void getRuntimeBuffers(RuntimeBuffers const* runtimeBuffers, TensorMap& inputBuffers, TensorMap& outputBuffers,
SizeType32 const step, TensorPtr const& inputIds, ModelConfig const& modelConfig,
WorldConfig const& worldConfig) const;
protected:
void tile(RuntimeBuffers* runtimeBuffers, BufferManager& manager, ModelConfig const& modelConfig,
WorldConfig const& worldConfig);
void fillStatePtrs();
private:
SizeType32 mConvKernel = 0;
SizeType32 mStateSize = 0;
SizeType32 mRnnHiddenSize = 0;
SizeType32 mRnnHeadSize = 0;
SizeType32 mRnnConvDimSize = 0;
int mLocalNbLayers = 0;
int mMaxBeamWidth = 0;
bool mUseMambaConv1dPlugin = true;
};
} // namespace tensorrt_llm::runtime