TensorRT-LLMs/cpp/include/tensorrt_llm/runtime/gptDecoderBatch.h
2023-09-20 00:29:41 -07:00

142 lines
5.3 KiB
C++

/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/cudaStream.h"
#include "tensorrt_llm/runtime/gptDecoder.h"
#include "tensorrt_llm/runtime/iGptDecoderBatch.h"
#include "tensorrt_llm/runtime/iTensor.h"
#include <cstdint>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
namespace tensorrt_llm::runtime
{
//! GPT decoder class with support for in-flight batching
class GptDecoderBatch : public IGptDecoderBatch
{
public:
using CudaStreamPtr = std::shared_ptr<CudaStream>;
using TensorPtr = std::shared_ptr<ITensor>;
GptDecoderBatch(std::size_t vocabSize, std::size_t vocabSizePadded, CudaStreamPtr stream);
//! Setup the decoder before calling `forward()`
void setup(
SizeType maxBatchSize, SizeType maxBeamWidth, SizeType maxSequenceLength, nvinfer1::DataType dtype) override;
//! @brief Initialize the decoder at `batchIdx` with a new `request`.
void newRequest(
SizeType batchIdx, decoder_batch::Request const& request, SamplingConfig const& samplingConfig) override;
void newBatch(GenerationInput const& inputs, SamplingConfig const& samplingConfig) override;
//! @brief Run one step for all requests.
//! Note that this method will synchronize with the stream associated with the decoder.
void forward(decoder_batch::Output& output, decoder_batch::Input const& input) override;
bool forward(decoder::Output& output, decoder::Input const& input) override;
//! @brief Gather final results for request `batchIdx`.
void postProcessRequest(SizeType batchIdx) const override;
//! @return [batchSize], indicators of finished requests
[[nodiscard]] std::vector<bool> getFinished() const override
{
return std::vector<bool>(mFinished.begin(), mFinished.begin() + mActualBatchSize);
}
//! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains input token ids and generated token
//! ids without padding, on gpu
[[nodiscard]] TensorPtr getOutputIds() const override
{
return ITensor::slice(mJointDecodingOutput->ids, 0, mActualBatchSize);
}
[[nodiscard]] TensorPtr getFinalOutputIds() const override;
//! @returns [batchSize, maxBeamWidth, maxInputLength + maxNewTokens], contains parent ids collected during beam
//! search without padding, on gpu
[[nodiscard]] TensorPtr getParentIds() const override
{
return ITensor::slice(mJointDecodingOutput->parentIds, 0, mActualBatchSize);
}
//! @returns [batchSize, maxBeamWidth], marks finished requests (per beam), on gpu
[[nodiscard]] TensorPtr getFinishedBeams() const override
{
return ITensor::slice(mJointDecodingOutput->finished, 0, mActualBatchSize);
}
//! @returns [batchSize, maxBeamWidth], total sequence lengths (per beam), on gpu
[[nodiscard]] TensorPtr getOutputLengths() const override
{
return ITensor::slice(mJointDecodingOutput->lengths, 0, mActualBatchSize);
}
//! @returns [batchSize, maxBeamWidth], cumulative log probabilities (per beam), on gpu
[[nodiscard]] TensorPtr getCumLogProbs() const override
{
return ITensor::slice(mJointDecodingOutput->cumLogProbs, 0, mActualBatchSize);
}
//! @returns [batchSize, maxBeamWidth], tokens generated in last forward pass, on gpu
[[nodiscard]] TensorPtr getNewTokens() const override
{
return ITensor::slice(mJointDecodingOutput->newTokens, 0, mActualBatchSize);
}
//! @returns [batchSize], the number of generation steps executed on each request
[[nodiscard]] std::vector<SizeType> getNbSteps() const override
{
return std::vector<SizeType>(mNbSteps.begin(), mNbSteps.begin() + mActualBatchSize);
}
private:
std::size_t const mVocabSize;
std::size_t const mVocabSizePadded;
CudaStreamPtr mStream;
BufferManager mBufferManager;
tensorrt_llm::common::EventPtr mEventStart, mEventStop;
std::vector<CudaStreamPtr> mStreams;
std::vector<tensorrt_llm::common::EventPtr> mEvents;
using GptDecoderPtr = std::unique_ptr<IGptDecoder>;
std::vector<GptDecoderPtr> mDecoders;
using DecodingInputPtr = std::unique_ptr<DecodingInput>;
std::vector<DecodingInputPtr> mDecodingInputs;
using DecodingOutputPtr = std::unique_ptr<DecodingOutput>;
std::vector<DecodingOutputPtr> mDecodingOutputs;
DecodingInputPtr mJointDecodingInput;
DecodingOutputPtr mJointDecodingOutput;
std::vector<SizeType> mNbSteps;
std::vector<bool> mFinished;
std::vector<SizeType> mMaxNewTokens;
std::vector<SizeType> mBeamWidths;
SizeType mMaxSequenceLength{};
SizeType mActualBatchSize{};
};
} // namespace tensorrt_llm::runtime