TensorRT-LLMs/cpp/tensorrt_llm/kernels/samplingTopKKernels.cu
2023-09-20 00:29:41 -07:00

427 lines
18 KiB
Plaintext

/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdexcept>
#ifndef CUDART_VERSION
#error CUDART_VERSION Undefined!
#elif (CUDART_VERSION >= 11050)
#include <cub/cub.cuh>
#else
#include "3rdparty/cub/cub.cuh"
#endif
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/common/stringUtils.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
using namespace tensorrt_llm::common;
namespace tensorrt_llm
{
namespace kernels
{
__global__ void curandInitialize(curandState_t* state, const int size, const unsigned long long random_seed)
{
if (threadIdx.x + blockIdx.x * blockDim.x < size)
{
curand_init(random_seed, 0, 0, &state[blockIdx.x * blockDim.x + threadIdx.x]);
}
}
void invokeCurandInitialize(
curandState_t* state, const size_t batch_size, const unsigned long long random_seed, cudaStream_t stream)
{
dim3 block(256);
dim3 grid((int) (ceil(batch_size * 1.0 / 256)));
curandInitialize<<<grid, block, 0, stream>>>(state, batch_size, random_seed);
}
__global__ void curandBatchInitialize(curandState_t* states, const int size, const unsigned long long* random_seeds)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < size)
{
curand_init(random_seeds[idx], 0, 0, &states[idx]);
}
}
void invokeCurandBatchInitialize(
curandState_t* states, const size_t batch_size, const unsigned long long* random_seeds, cudaStream_t stream)
{
dim3 block(256);
dim3 grid((int) (ceil(batch_size * 1.0 / 256)));
curandBatchInitialize<<<grid, block, 0, stream>>>(states, batch_size, random_seeds);
}
template <typename T>
__global__ void addBiasEndMask(T* logits, const T* bias, const int* end_ids, const bool* finished, const int vocab_size,
const int vocab_size_padded)
{
int bid = blockIdx.x;
bool finish = finished != nullptr ? finished[bid] : false;
int offset = bid * vocab_size_padded;
const bool IS_FP16 = std::is_same<T, half>::value;
const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX;
for (int tid = threadIdx.x; tid < vocab_size_padded; tid += blockDim.x)
{
if (tid >= vocab_size)
{
logits[offset + tid] = -MAX_T_VAL;
}
else if (finish)
{
logits[offset + tid] = (tid == end_ids[bid]) ? MAX_T_VAL : -MAX_T_VAL;
}
else
{
if (bias != nullptr)
{
logits[offset + tid] += bias[tid];
}
}
}
}
template <typename T>
void invokeAddBiasEndMask(T* logits, const T* bias, const int* end_ids, const bool* finished, const int batch_size,
const int vocab_size, const int vocab_size_padded, cudaStream_t stream)
{
dim3 grid(batch_size);
dim3 block(min(vocab_size_padded, 1024));
/*n is the vocab_size, e.g., 30000, 7000.... vocab_size is usually very big.
*/
addBiasEndMask<<<grid, block, 0, stream>>>(logits, bias, end_ids, finished, vocab_size, vocab_size_padded);
}
template void invokeAddBiasEndMask(float* logits, const float* bias, const int* end_ids, const bool* finished,
const int batch_size, const int vocab_size, const int vocab_size_padded, cudaStream_t stream);
template void invokeAddBiasEndMask(half* logits, const half* bias, const int* end_ids, const bool* finished,
const int batch_size, const int vocab_size, const int vocab_size_padded, cudaStream_t stream);
template <typename T, int BLOCK_SIZE_, int BLOCKS_PER_BEAM_>
__global__ void topk_stage1(const T* __restrict log_probs, T* tmp_log_probs, int* topk_tmp_id_buf, T* topk_tmp_val_buf,
const bool* finished, const int max_top_k, const int* top_ks, const int vocab_size, const int* end_ids,
const bool* skip_decode)
{
typedef cub::BlockReduce<TopK_2<T>, BLOCK_SIZE_> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
const int tid = threadIdx.x;
const int bid = blockIdx.x;
const int batch_id = bid / BLOCKS_PER_BEAM_; // row id for log_probs
if (skip_decode != nullptr && skip_decode[batch_id])
{
return;
}
const int block_lane = bid % BLOCKS_PER_BEAM_; // block id for a beam
const int k = (top_ks != nullptr) ? top_ks[batch_id] : max_top_k; // batch_id = batch index
const int tmp_log_buf_index = batch_id * vocab_size;
const int tmp_topk_buf_index = batch_id * BLOCKS_PER_BEAM_ * max_top_k + block_lane * k;
TopK_2<T> partial;
const bool IS_FP16 = std::is_same<T, half>::value;
const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX;
if (finished != nullptr && finished[batch_id] == true)
{
if (tid < k)
{
const int index = tmp_topk_buf_index + tid;
if (block_lane == 0 && tid == 0)
{
const int end_id = end_ids[batch_id];
topk_tmp_id_buf[index] = tmp_log_buf_index + end_id;
topk_tmp_val_buf[index] = log_probs[tmp_log_buf_index + end_id];
}
else
{
topk_tmp_id_buf[index] = -1;
topk_tmp_val_buf[index] = -MAX_T_VAL;
}
}
return;
}
for (int elem_id = tid + block_lane * BLOCK_SIZE_; elem_id < vocab_size; elem_id += BLOCK_SIZE_ * BLOCKS_PER_BEAM_)
{
int index = elem_id + tmp_log_buf_index;
tmp_log_probs[index] = log_probs[index];
}
for (int ite = 0; ite < k; ite++)
{
partial.init();
#pragma unroll
for (int elem_id = tid + block_lane * BLOCK_SIZE_; elem_id < vocab_size;
elem_id += BLOCK_SIZE_ * BLOCKS_PER_BEAM_)
{
int index = elem_id + tmp_log_buf_index;
partial.insert(tmp_log_probs[index], index);
}
TopK_2<T> total = BlockReduce(temp_storage).Reduce(partial, reduce_topk_op_2<T>);
if (tid == 0)
{
const int index = tmp_topk_buf_index + ite;
topk_tmp_id_buf[index] = total.p;
topk_tmp_val_buf[index] = total.u;
if (total.p >= 0 && total.p < vocab_size)
{
tmp_log_probs[total.p] = -MAX_T_VAL;
}
}
__syncthreads();
}
}
template <typename T, int BLOCK_SIZE_, int BLOCKS_PER_BEAM_>
__global__ void topk_stage2_sampling(const int* __restrict topk_tmp_id_buf, T* topk_tmp_val_buf, int** ids,
int* sequence_lengths, bool* finished, float* cum_log_probs, float* output_log_probs, const int max_top_k,
const int* top_ks, const float top_p, const float* top_ps, curandState_t* curandstate, const int* end_ids,
const int vocab_size, const bool* skip_decode)
{
const bool IS_FP16 = std::is_same<T, half>::value;
const T MAX_T_VAL = (IS_FP16) ? HALF_FLT_MAX : FLT_MAX;
const int tid = threadIdx.x;
const int batch_id = blockIdx.x;
if (skip_decode != nullptr && skip_decode[batch_id])
{
return;
}
const int k = (top_ks != nullptr) ? top_ks[batch_id] : max_top_k;
const float prob_threshold = (top_ps != nullptr) ? top_ps[batch_id] : top_p;
const int size = k * BLOCKS_PER_BEAM_;
const int stride = max_top_k * BLOCKS_PER_BEAM_;
typedef cub::BlockReduce<TopK_2<float>, BLOCK_SIZE_> BlockReduce;
__shared__ typename BlockReduce::TempStorage temp_storage;
extern __shared__ char array[];
__shared__ float rand_num;
__shared__ float s_sum;
__shared__ float s_max;
T* s_val = topk_tmp_val_buf + batch_id * stride;
int* s_id = reinterpret_cast<int*>(array);
if (tid == 0)
{
s_sum = 0.0f;
}
TopK_2<float> partial;
if (finished != nullptr && finished[batch_id] == true)
{
ids[batch_id][sequence_lengths[batch_id]] = end_ids[batch_id];
return;
}
float* s_val2 = reinterpret_cast<float*>(s_id + k);
for (int ite = 0; ite < k; ite++)
{
partial.init();
#pragma unroll
for (int i = tid; i < size; i += BLOCK_SIZE_)
{
partial.insert((float) s_val[i], i);
}
TopK_2<float> total = BlockReduce(temp_storage).Reduce(partial, reduce_topk_op_2<float>);
if (tid == 0)
{
if (ite == 0)
{
s_max = total.u;
}
s_id[ite] = total.p;
s_val[total.p] = -MAX_T_VAL;
// when cum_log_probs are computed, topk_tmp_val_buf (logits_buf_) are
// already pre-processed by softmax_kernel
if (cum_log_probs == nullptr && output_log_probs == nullptr)
{
total.u = __expf(total.u - s_max);
}
s_val2[ite] = total.u;
s_sum += total.u;
}
__syncthreads();
}
if (tid == 0)
{
rand_num = (float) curand_uniform(curandstate + blockIdx.x) * prob_threshold * s_sum;
for (int i = 0; i < k; i++)
{
float exp_logit = s_val2[i];
rand_num = rand_num - exp_logit;
if (rand_num <= 0.0f || i == k - 1)
{
ids[batch_id][sequence_lengths[batch_id]] = topk_tmp_id_buf[batch_id * stride + s_id[i]] % vocab_size;
if (cum_log_probs != nullptr || output_log_probs != nullptr)
{
float log_prob = logf(exp_logit);
if (cum_log_probs != nullptr)
{
cum_log_probs[batch_id] += log_prob;
}
if (output_log_probs != nullptr)
{
// 'output_log_probs' is the probability induced by the top-k
// sampling. We normalize the probability 'exp_logit' of the
// selected token by the probability 's_sum' of a set of top-k
// tokens, meaning the log_prob is the probability of the selected
// token, conditioned on the event that it is selected, i.e.,
// log_prob = log P(i | i is in top-k) = log(exp_logit / s_sum).
output_log_probs[batch_id] = log_prob - logf(s_sum);
}
}
break;
}
}
if (sequence_lengths != nullptr && finished != nullptr)
{
int seqlen = sequence_lengths[batch_id];
finished[batch_id] = ids[batch_id][seqlen] == end_ids[batch_id];
if (!finished[batch_id])
{
sequence_lengths[batch_id] = seqlen + 1;
}
}
}
}
#define CASE_K(K_MIN, K_MAX, BLOCK_SIZE_1_, BLOCK_SIZE_2_, BLOCKS_PER_BEAM_) \
case K_MIN ... K_MAX: \
topk_stage1<T, BLOCK_SIZE_1_, BLOCKS_PER_BEAM_> \
<<<batch_size * BLOCKS_PER_BEAM_, BLOCK_SIZE_1_, 0, stream>>>(log_probs, temp_log_probs, topk_tmp_id_buf, \
topk_tmp_val_buf, finished, max_top_k, top_ks, vocab_size, end_ids, skip_decode); \
topk_stage2_sampling<T, BLOCK_SIZE_2_, BLOCKS_PER_BEAM_> \
<<<batch_size, BLOCK_SIZE_2_, K_MAX * sizeof(int) + K_MAX * sizeof(float), stream>>>(topk_tmp_id_buf, \
topk_tmp_val_buf, ids, sequence_lengths, finished, cum_log_probs, output_log_probs, max_top_k, top_ks, \
top_p, top_ps, curandstate, end_ids, vocab_size, skip_decode); \
break;
template <typename T>
void invokeBatchTopKSampling(void* workspace, size_t& workspace_size, const T* log_probs, int** ids,
int* sequence_lengths, bool* finished, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate,
const int max_top_k, const int* top_ks, const float top_p, const float* top_ps, const int vocab_size_padded,
const int* end_ids, cudaStream_t stream, const int batch_size, const bool* skip_decode)
{
TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
// Not allow an ambiguous inputs top_p and top_ps.
assert(top_p == 1.0f || top_ps == nullptr);
const int vocab_size = vocab_size_padded;
const int max_block_per_beam = 8;
int temp_log_probs_buf_size = batch_size * vocab_size; // type float
int topk_tmp_ids_buf_size = batch_size * max_top_k * max_block_per_beam; // type int
int topk_tmp_val_buf_size = batch_size * max_top_k * max_block_per_beam; // type float
// prevent memory misaligned address
temp_log_probs_buf_size = (int) (ceil(temp_log_probs_buf_size / 4.)) * 4;
topk_tmp_ids_buf_size = (int) (ceil(topk_tmp_ids_buf_size / 4.)) * 4;
topk_tmp_val_buf_size = (int) (ceil(topk_tmp_val_buf_size / 4.)) * 4;
if (workspace == nullptr)
{
workspace_size = sizeof(T) * temp_log_probs_buf_size + sizeof(int) * topk_tmp_ids_buf_size
+ sizeof(T) * topk_tmp_val_buf_size;
return;
}
T* temp_log_probs = (T*) workspace;
int* topk_tmp_id_buf = (int*) (temp_log_probs + temp_log_probs_buf_size);
T* topk_tmp_val_buf = (T*) (topk_tmp_id_buf + topk_tmp_ids_buf_size);
switch (max_top_k)
{
CASE_K(1, 16, 128, 128, 8);
CASE_K(17, 32, 256, 128, 8);
CASE_K(33, 64, 256, 256, 8);
CASE_K(65, 1024, 256, 256, 8);
default: throw std::domain_error(fmtstr("top-k kernel supports 1<=k<=1024 but got k=%d", max_top_k));
}
}
#undef CASE_K
template void invokeBatchTopKSampling(void* workspace, size_t& workspace_size, const float* log_probs, int** ids,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int max_top_k, const int* top_ks, const float top_p, const float* top_ps,
const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size,
const bool* skip_decode);
template void invokeBatchTopKSampling(void* workspace, size_t& workspace_size, const half* log_probs, int** ids,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int max_top_k, const int* top_ks, const float top_p, const float* top_ps,
const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size,
const bool* skip_decode);
template <typename T>
void invokeTopKSampling(void* workspace, size_t& workspace_size, const T* log_probs, int** ids, int* sequence_lengths,
bool* finished_buf, float* cum_log_probs, float* output_log_probs, curandState_t* curandstate, const int top_k,
const float top_p, const int vocab_size_padded, const int* end_ids, cudaStream_t stream, const int batch_size,
const bool* skip_decode)
{
invokeBatchTopKSampling(workspace, workspace_size, log_probs, ids, sequence_lengths, finished_buf, cum_log_probs,
output_log_probs, curandstate, top_k, nullptr, top_p, nullptr, vocab_size_padded, end_ids, stream, batch_size,
skip_decode);
}
template void invokeTopKSampling(void* workspace, size_t& workspace_size, const float* log_probs, int** ids,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids,
cudaStream_t stream, const int batch_size, const bool* skip_decode);
template void invokeTopKSampling(void* workspace, size_t& workspace_size, const half* log_probs, int** ids,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int top_k, const float top_p, const int vocab_size_padded, const int* end_ids,
cudaStream_t stream, const int batch_size, const bool* skip_decode);
template <typename T>
void invokeTopKTopPSampling(void* workspace, size_t& workspace_size, int** output_ids, const T* logits,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int batch_size, const int top_k, const float top_p, const int vocab_size_padded,
const int* end_ids, cudaStream_t stream)
{
// invokeTopKTopPSampling will be deprecated. Please use invokeTopKSampling
// instead.
invokeTopKSampling(workspace, workspace_size, logits, output_ids, sequence_lengths, finished_buf, cum_log_probs,
output_log_probs, curandstate, top_k, top_p, vocab_size_padded, end_ids, stream, batch_size, nullptr);
}
template void invokeTopKTopPSampling(void* workspace, size_t& workspace_size, int** output_ids, const float* logits,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int batch_size, const int top_k, const float top_p, const int vocab_size_padded,
const int* end_ids, cudaStream_t stream);
template void invokeTopKTopPSampling(void* workspace, size_t& workspace_size, int** output_ids, const half* logits,
int* sequence_lengths, bool* finished_buf, float* cum_log_probs, float* output_log_probs,
curandState_t* curandstate, const int batch_size, const int top_k, const float top_p, const int vocab_size_padded,
const int* end_ids, cudaStream_t stream);
} // namespace kernels
} // namespace tensorrt_llm