TensorRT-LLMs/cpp/tensorrt_llm/plugins/weightOnlyGroupwiseQuantMatmulPlugin/weightOnlyGroupwiseQuantMatmulPlugin.h
2023-09-20 00:29:41 -07:00

147 lines
5.5 KiB
C++

/*
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TRT_WEIGHT_ONLY_GROUPWISE_QUANT_MATMUL_PLUGIN_H
#define TRT_WEIGHT_ONLY_GROUPWISE_QUANT_MATMUL_PLUGIN_H
#include "NvInferPlugin.h"
#include "cutlass/numeric_types.h"
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/kernels/cutlass_kernels/fpA_intB_gemm/fpA_intB_gemm.h"
#include "tensorrt_llm/kernels/preQuantScaleKernel.h"
#include "tensorrt_llm/kernels/weightOnlyGroupwiseMatrixVectorMultiplication.h"
#include "tensorrt_llm/plugins/common/plugin.h"
#include <cassert>
#include <memory>
#include <set>
#include <string>
#include <vector>
// The blank line here is to avoid clang-format -sort-includes option reordering these two cutlass header files and
// breaking dependencies
#include "cutlass/integer_subbyte.h"
namespace nvinfer1
{
namespace plugin
{
class WeightOnlyGroupwiseQuantMatmulPlugin : public IPluginV2DynamicExt
{
public:
WeightOnlyGroupwiseQuantMatmulPlugin() = delete;
WeightOnlyGroupwiseQuantMatmulPlugin(nvinfer1::DataType type, int quant_algo, int group_size);
WeightOnlyGroupwiseQuantMatmulPlugin(const void* data, size_t length);
~WeightOnlyGroupwiseQuantMatmulPlugin() override = default;
// IPluginV2DynamicExt Methods
nvinfer1::IPluginV2DynamicExt* clone() const noexcept override;
nvinfer1::DimsExprs getOutputDimensions(int outputIndex, const nvinfer1::DimsExprs* inputs, int nbInputs,
nvinfer1::IExprBuilder& exprBuilder) noexcept override;
bool supportsFormatCombination(
int pos, const nvinfer1::PluginTensorDesc* inOut, int nbInputs, int nbOutputs) noexcept override;
void configurePlugin(const nvinfer1::DynamicPluginTensorDesc* in, int nbInputs,
const nvinfer1::DynamicPluginTensorDesc* out, int nbOutputs) noexcept override;
size_t getWorkspaceSize(const nvinfer1::PluginTensorDesc* inputs, int nbInputs,
const nvinfer1::PluginTensorDesc* outputs, int nbOutputs) const noexcept override;
int enqueue(const nvinfer1::PluginTensorDesc* inputDesc, const nvinfer1::PluginTensorDesc* outputDesc,
const void* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override;
// IPluginV2Ext Methods
nvinfer1::DataType getOutputDataType(
int index, const nvinfer1::DataType* inputTypes, int nbInputs) const noexcept override;
// IPluginV2 Methods
const char* getPluginType() const noexcept override;
const char* getPluginVersion() const noexcept override;
int getNbOutputs() const noexcept override;
int initialize() noexcept override;
void terminate() noexcept override;
size_t getSerializationSize() const noexcept override;
void serialize(void* buffer) const noexcept override;
void destroy() noexcept override;
void setPluginNamespace(const char* pluginNamespace) noexcept override;
const char* getPluginNamespace() const noexcept override;
private:
// group_size: 64, 128
void init(nvinfer1::DataType type, int quant_algo, int group_size);
private:
const std::string mLayerName;
std::string mNamespace;
std::shared_ptr<tensorrt_llm::kernels::cutlass_kernels::CutlassFpAIntBGemmRunnerInterface>
m_weightOnlyGroupwiseGemmRunner;
int m_workspaceMaxSize;
nvinfer1::DataType mType;
// When M is smaller than this value, we trigger a fast path
// I.e. a tailored kernel instead of cutlass.
static constexpr int SMALL_M_FAST_PATH = 5;
int mQuantAlgo;
// Flags for indicating whether the corresponding inputs are applied in mQuantAlgo
// mQuantAlgo = pre_quant_scale * PRE_SCALE_QUANT + zero * ZER0 + bias * BIAS
// Here pre_quant_scale, zero and bias are boolean type
static constexpr int BIAS = int(1) << 0;
static constexpr int ZER0 = int(1) << 1;
static constexpr int PRE_SCALE_QUANT = int(1) << 2;
int mGroupSize;
int mPreQuantScaleInputIdx;
int mWeightInputIdx;
int mScalesInputIdx;
int mZerosInputIdx;
int mBiasesInputIdx;
};
class WeightOnlyGroupwiseQuantMatmulPluginCreator : public IPluginCreator
{
public:
WeightOnlyGroupwiseQuantMatmulPluginCreator();
const char* getPluginName() const noexcept override;
const char* getPluginVersion() const noexcept override;
const nvinfer1::PluginFieldCollection* getFieldNames() noexcept override;
nvinfer1::IPluginV2* createPlugin(const char* name, const nvinfer1::PluginFieldCollection* fc) noexcept override;
nvinfer1::IPluginV2* deserializePlugin(
const char* name, const void* serialData, size_t serialLength) noexcept override;
void setPluginNamespace(const char* pluginNamespace) noexcept override;
const char* getPluginNamespace() const noexcept override;
private:
static PluginFieldCollection mFC;
static std::vector<PluginField> mPluginAttributes;
std::string mNamespace;
};
} // namespace plugin
} // namespace nvinfer1
#endif // TRT_WEIGHT_ONLY_GROUPWISE_QUANT_MATMUL_PLUGIN_H