mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
738 lines
32 KiB
Plaintext
738 lines
32 KiB
Plaintext
/*
|
|
* SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION &
|
|
* AFFILIATES. All rights reserved. SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "tensorrt_llm/common/cudaUtils.h"
|
|
#include "tensorrt_llm/common/memoryUtils.h"
|
|
#include "tensorrt_llm/runtime/runtimeKernels.h"
|
|
|
|
#include <cub/cub.cuh>
|
|
#include <cuda_fp16.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
namespace tc = tensorrt_llm::common;
|
|
|
|
namespace tensorrt_llm::runtime::kernels
|
|
{
|
|
|
|
namespace
|
|
{
|
|
|
|
template <typename T>
|
|
__global__ void fill(T* data, std::size_t size, T const value)
|
|
{
|
|
auto const idx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
|
|
|
|
if (idx < size)
|
|
{
|
|
data[idx] = value;
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
void invokeFill(IBuffer& buffer, T const value, CudaStream const& stream)
|
|
{
|
|
auto data = bufferCast<T>(buffer);
|
|
auto const size = buffer.getSize();
|
|
dim3 const blockSize(256);
|
|
dim3 const gridSize((size + blockSize.x - 1) / blockSize.x);
|
|
|
|
fill<<<gridSize, blockSize, 0, stream.get()>>>(data, size, value);
|
|
}
|
|
|
|
// template instantiation
|
|
template void invokeFill(IBuffer&, SizeType, CudaStream const&);
|
|
template void invokeFill(IBuffer&, float, CudaStream const&);
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
__global__ void add(T* data, std::size_t size, T const value)
|
|
{
|
|
auto const idx = static_cast<std::size_t>(blockIdx.x) * blockDim.x + threadIdx.x;
|
|
|
|
if (idx < size)
|
|
{
|
|
data[idx] += value;
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
void invokeAdd(IBuffer& buffer, T const value, CudaStream const& stream)
|
|
{
|
|
auto data = bufferCast<T>(buffer);
|
|
auto const size = buffer.getSize();
|
|
dim3 const blockSize(256);
|
|
dim3 const gridSize((size + blockSize.x - 1) / blockSize.x);
|
|
|
|
add<<<gridSize, blockSize, 0, stream.get()>>>(data, size, value);
|
|
}
|
|
|
|
template void invokeAdd(IBuffer&, SizeType, CudaStream const&);
|
|
|
|
namespace
|
|
{
|
|
__global__ void transpose(SizeType* output, SizeType const* input, SizeType const batchSize, SizeType const rowSize)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType tokenIdx = tidx; tokenIdx < rowSize; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const inputIdx = batchIdx * rowSize + tokenIdx;
|
|
auto const outputIdx = tokenIdx * batchSize + batchIdx;
|
|
output[outputIdx] = input[inputIdx];
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeTranspose(ITensor& output, ITensor const& input, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
|
|
TLLM_CHECK_WITH_INFO(input.getSize() == output.getSize(),
|
|
common::fmtstr("Input size (%ld) and output size (%ld) differ", input.getSize(), output.getSize()));
|
|
|
|
auto const& inputShape = input.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputShape.nbDims == 2, common::fmtstr("Input shape must have 2 dimensions, but has %d", inputShape.nbDims));
|
|
|
|
SizeType const batchSize = inputShape.d[0];
|
|
SizeType const rowSize = inputShape.d[1];
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((rowSize + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
transpose<<<gridSize, blockSize, 0, stream.get()>>>(
|
|
bufferCast<SizeType>(output), bufferCast<SizeType const>(input), batchSize, rowSize);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void transposeWithOutputOffset(SizeType* output, SizeType const* input, SizeType const nbInputRows,
|
|
SizeType const inputRowSize, SizeType const outputRowSize, SizeType const outputOffset)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < nbInputRows; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType tokenIdx = tidx; tokenIdx < inputRowSize; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const inputIdx = batchIdx * inputRowSize + tokenIdx;
|
|
auto const outputIdx = tokenIdx * outputRowSize + outputOffset + batchIdx;
|
|
output[outputIdx] = input[inputIdx];
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeTransposeWithOutputOffset(
|
|
ITensor& output, ITensor const& input, SizeType const outputOffset, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
|
|
|
|
auto const& inputShape = input.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputShape.nbDims == 2, common::fmtstr("Input shape must have 2 dimensions, but has %d", inputShape.nbDims));
|
|
SizeType const nbInputRows = inputShape.d[0];
|
|
SizeType const inputRowSize = inputShape.d[1];
|
|
|
|
auto const& outputShape = output.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
outputShape.nbDims == 2, common::fmtstr("Output shape must have 2 dimensions, but has %d", outputShape.nbDims));
|
|
SizeType const nbOutputRows = outputShape.d[0];
|
|
SizeType const outputRowSize = outputShape.d[1];
|
|
|
|
TLLM_CHECK_WITH_INFO(inputRowSize == nbOutputRows,
|
|
common::fmtstr("Input dim 1 (%d) and output dim 0 (%d) differ", inputRowSize, nbOutputRows));
|
|
TLLM_CHECK_WITH_INFO(outputOffset + nbInputRows <= outputRowSize,
|
|
common::fmtstr("Input (%d rows) does not fit into output (%d columns, offset %d)", nbInputRows, inputRowSize,
|
|
outputOffset));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((inputRowSize + blockSize.x - 1) / blockSize.x, nbInputRows);
|
|
|
|
transposeWithOutputOffset<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(output),
|
|
bufferCast<SizeType const>(input), nbInputRows, inputRowSize, outputRowSize, outputOffset);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void transposeWithInputOffset(SizeType* output, SizeType const* input, SizeType const outputRowSize,
|
|
SizeType const nbOutputRows, SizeType const inputRowSize, SizeType const inputOffset)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < outputRowSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType tokenIdx = tidx; tokenIdx < nbOutputRows; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const inputIdx = batchIdx * inputRowSize + inputOffset + tokenIdx;
|
|
auto const outputIdx = tokenIdx * outputRowSize + batchIdx;
|
|
output[outputIdx] = input[inputIdx];
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeTransposeWithInputOffset(
|
|
ITensor& output, ITensor const& input, SizeType const inputOffset, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(input.getDataType() == output.getDataType(), "Input and output have different data types");
|
|
|
|
auto const& inputShape = input.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputShape.nbDims == 2, common::fmtstr("Input shape must have 2 dimensions, but has %d", inputShape.nbDims));
|
|
SizeType const nbInputRows = inputShape.d[0];
|
|
SizeType const inputRowSize = inputShape.d[1];
|
|
|
|
auto const& outputShape = output.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
outputShape.nbDims == 2, common::fmtstr("Output shape must have 2 dimensions, but has %d", outputShape.nbDims));
|
|
SizeType const nbOutputRows = outputShape.d[0];
|
|
SizeType const outputRowSize = outputShape.d[1];
|
|
|
|
TLLM_CHECK_WITH_INFO(nbInputRows == outputRowSize,
|
|
common::fmtstr("Input dim 0 (%d) and output dim 1 (%d) differ", nbInputRows, outputRowSize));
|
|
TLLM_CHECK_WITH_INFO(inputOffset + nbOutputRows <= inputRowSize,
|
|
common::fmtstr("Cannot extract output (%d rows) from input (%d columns, offset %d)", nbOutputRows, inputRowSize,
|
|
inputOffset));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((nbOutputRows + blockSize.x - 1) / blockSize.x, outputRowSize);
|
|
|
|
transposeWithInputOffset<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(output),
|
|
bufferCast<SizeType const>(input), outputRowSize, nbOutputRows, inputRowSize, inputOffset);
|
|
}
|
|
|
|
void invokeInclusiveSum(IBuffer& output, IBuffer const& input, BufferManager const& manager, CudaStream const& stream)
|
|
{
|
|
auto const size = input.getSize();
|
|
auto const* inputData = bufferCast<SizeType>(input);
|
|
auto* outputData = bufferCast<SizeType>(output);
|
|
|
|
std::size_t tempStorageBytes{0};
|
|
cub::DeviceScan::InclusiveSum(nullptr, tempStorageBytes, inputData, outputData, size, stream.get());
|
|
auto tempStorage = manager.gpu(tempStorageBytes, nvinfer1::DataType::kUINT8);
|
|
auto* tempStorageData = bufferCast<std::uint8_t>(*tempStorage);
|
|
cub::DeviceScan::InclusiveSum(tempStorageData, tempStorageBytes, inputData, outputData, size, stream.get());
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void buildTokenMask(SizeType* tokenMask, SizeType const* inputLengths, SizeType const batchSize,
|
|
SizeType const maxInputLength, SizeType const maxSeqLength)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
auto const inputLength = inputLengths[batchIdx];
|
|
for (SizeType tokenIdx = tidx; tokenIdx < maxSeqLength; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
tokenMask[batchIdx * maxSeqLength + tokenIdx]
|
|
= (tokenIdx >= inputLength && tokenIdx < maxInputLength) ? 1 : 0;
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeBuildTokenMask(
|
|
ITensor& tokenMask, ITensor const& inputLengths, SizeType const maxInputLength, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(TRTDataType<SizeType>::value == tokenMask.getDataType(), "tokenMask has wrong data type");
|
|
TLLM_CHECK_WITH_INFO(
|
|
TRTDataType<SizeType>::value == inputLengths.getDataType(), "inputLengths has wrong data type");
|
|
|
|
auto const& shape = tokenMask.getShape();
|
|
SizeType const batchSize = shape.d[0];
|
|
SizeType const maxSeqLength = shape.d[1];
|
|
|
|
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
|
|
common::fmtstr(
|
|
"TtokenMask dimension 1 (%d) is smaller than max input length (%d)", maxSeqLength, maxInputLength));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((maxSeqLength + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
buildTokenMask<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(tokenMask),
|
|
bufferCast<SizeType const>(inputLengths), batchSize, maxInputLength, maxSeqLength);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void buildAttentionMask(SizeType* attentionMask, SizeType const size, SizeType const padId)
|
|
{
|
|
SizeType const tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (SizeType i = tid; i < size; i += blockDim.x * gridDim.x)
|
|
{
|
|
auto const x = attentionMask[i];
|
|
attentionMask[i] = (x != padId);
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeBuildAttentionMask(ITensor& attentionMask, SizeType const padId, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(
|
|
TRTDataType<SizeType>::value == attentionMask.getDataType(), "attentionMask has wrong data type");
|
|
|
|
auto const size = attentionMask.getSize();
|
|
dim3 const blockSize(256);
|
|
dim3 const gridSize((size + blockSize.x - 1) / blockSize.x);
|
|
|
|
buildAttentionMask<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(attentionMask), size, padId);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void extendAttentionMask(
|
|
SizeType* newMask, SizeType const* oldMask, SizeType const batchSize, SizeType const seqLength)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType tokenIdx = tidx; tokenIdx < seqLength + 1; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
SizeType oldIndex = batchIdx * seqLength + tokenIdx;
|
|
SizeType newIndex = batchIdx * (seqLength + 1) + tokenIdx;
|
|
newMask[newIndex] = (tokenIdx < seqLength) ? oldMask[oldIndex] : 1;
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeExtendAttentionMask(ITensor& newMask, ITensor const& oldMask, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(TRTDataType<SizeType>::value == newMask.getDataType(), "attentionMask has wrong data type");
|
|
TLLM_CHECK_WITH_INFO(TRTDataType<SizeType>::value == oldMask.getDataType(), "attentionMask has wrong data type");
|
|
|
|
auto const& shape = oldMask.getShape();
|
|
SizeType const batchSize = shape.d[0];
|
|
SizeType const seqLength = shape.d[1];
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((seqLength + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
extendAttentionMask<<<gridSize, blockSize, 0, stream.get()>>>(
|
|
bufferCast<SizeType>(newMask), bufferCast<SizeType>(oldMask), batchSize, seqLength);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void copyInputToOutputTransposed(SizeType* outputIds, SizeType const* inputIds, SizeType const* inputLengths,
|
|
SizeType const padId, SizeType const batchSize, SizeType const beamWidth, SizeType const maxInputLength)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
auto const inputLength = inputLengths[batchIdx];
|
|
for (SizeType tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const value = (tokenIdx < inputLength) ? inputIds[batchIdx * maxInputLength + tokenIdx] : padId;
|
|
for (SizeType beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
|
|
{
|
|
auto const outputIdx = tc::flat_index3(tokenIdx, batchIdx, beamIdx, batchSize, beamWidth);
|
|
outputIds[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeCopyInputToOutputTransposed(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputLengths,
|
|
SizeType const padId, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
|
|
|
|
auto const batchSize = static_cast<SizeType>(inputLengths.getSize());
|
|
auto const& inputShape = inputIds.getShape();
|
|
SizeType const maxInputLength = inputShape.d[inputShape.nbDims - 1];
|
|
auto const& outputShape = outputIds.getShape();
|
|
SizeType const maxSeqLength = outputShape.d[0];
|
|
SizeType const beamWidth = outputShape.d[2];
|
|
|
|
auto const inputBatchSize = inputIds.getSize() / maxInputLength;
|
|
TLLM_CHECK_WITH_INFO(std::size_t(batchSize) == inputBatchSize,
|
|
common::fmtstr("Input ids batch size (%ld) does not match inputLengths size (%ld)", inputBatchSize,
|
|
std::size_t(batchSize)));
|
|
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[1],
|
|
common::fmtstr(
|
|
"Output ids batch size (%d) does not match inputLengths size (%d)", outputShape.d[1], batchSize));
|
|
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
|
|
common::fmtstr(
|
|
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
copyInputToOutputTransposed<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(outputIds),
|
|
bufferCast<SizeType const>(inputIds), bufferCast<SizeType const>(inputLengths), padId, batchSize, beamWidth,
|
|
maxInputLength);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void copyPackedInputToOutputTransposed(SizeType* outputIds, SizeType const* inputIds,
|
|
SizeType const* inputOffsets, SizeType const padId, SizeType const batchSize, SizeType const beamWidth,
|
|
SizeType const maxInputLength)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
auto const tokenBegin = inputOffsets[batchIdx];
|
|
auto const tokenEnd = inputOffsets[batchIdx + 1];
|
|
auto const inputLength = tokenEnd - tokenBegin;
|
|
|
|
for (SizeType tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const value = (tokenIdx < inputLength) ? inputIds[tokenBegin + tokenIdx] : padId;
|
|
for (SizeType beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
|
|
{
|
|
auto const outputIdx = tc::flat_index3(tokenIdx, batchIdx, beamIdx, batchSize, beamWidth);
|
|
outputIds[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeCopyPackedInputToOutputTransposed(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputOffsets,
|
|
SizeType const maxInputLength, SizeType const padId, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
|
|
|
|
auto const batchSize = static_cast<SizeType>(inputOffsets.getSize()) - 1;
|
|
auto const& outputShape = outputIds.getShape();
|
|
SizeType const maxSeqLength = outputShape.d[0];
|
|
SizeType const beamWidth = outputShape.d[2];
|
|
|
|
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[1],
|
|
common::fmtstr(
|
|
"Output ids batch size (%d) does not match inputOffsets batch size (%d)", outputShape.d[1], batchSize));
|
|
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
|
|
common::fmtstr(
|
|
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
copyPackedInputToOutputTransposed<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(outputIds),
|
|
bufferCast<SizeType const>(inputIds), bufferCast<SizeType const>(inputOffsets), padId, batchSize, beamWidth,
|
|
maxInputLength);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void copyInputToOutput(SizeType* outputIds, SizeType const* inputIds, SizeType const* inputLengths,
|
|
SizeType const padId, SizeType const batchSize, SizeType const beamWidth, SizeType const maxInputLength,
|
|
SizeType const maxSeqLength)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
auto const inputLength = inputLengths[batchIdx];
|
|
for (SizeType tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const value = (tokenIdx < inputLength) ? inputIds[batchIdx * maxInputLength + tokenIdx] : padId;
|
|
for (SizeType beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
|
|
{
|
|
auto const outputIdx = tc::flat_index3(batchIdx, beamIdx, tokenIdx, beamWidth, maxSeqLength);
|
|
outputIds[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeCopyInputToOutput(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputLengths,
|
|
SizeType const padId, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
|
|
|
|
auto const& inputShape = inputIds.getShape();
|
|
auto const& outputShape = outputIds.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
outputShape.nbDims == 3, common::fmtstr("Output shape must have 3 dimensions, but has %d", outputShape.nbDims));
|
|
|
|
auto const batchSize = static_cast<SizeType>(inputLengths.getSize());
|
|
SizeType const maxInputLength = inputShape.d[inputShape.nbDims - 1];
|
|
SizeType const beamWidth = outputShape.d[1];
|
|
SizeType const maxSeqLength = outputShape.d[2];
|
|
|
|
auto const inputBatchSize = inputIds.getSize() / maxInputLength;
|
|
TLLM_CHECK_WITH_INFO(std::size_t(batchSize) == inputBatchSize,
|
|
common::fmtstr("Input ids batch size (%ld) does not match inputLengths size (%ld)", inputBatchSize,
|
|
std::size_t(batchSize)));
|
|
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[0],
|
|
common::fmtstr(
|
|
"Output ids batch size (%d) does not match inputLengths size (%d)", outputShape.d[0], batchSize));
|
|
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
|
|
common::fmtstr(
|
|
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
copyInputToOutput<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(outputIds),
|
|
bufferCast<SizeType const>(inputIds), bufferCast<SizeType const>(inputLengths), padId, batchSize, beamWidth,
|
|
maxInputLength, maxSeqLength);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
__global__ void copyPackedInputToOutput(SizeType* outputIds, SizeType const* inputIds, SizeType const* inputOffsets,
|
|
SizeType const padId, SizeType const batchSize, SizeType const beamWidth, SizeType const maxInputLength,
|
|
SizeType const maxSeqLength)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
auto const tokenBegin = inputOffsets[batchIdx];
|
|
auto const tokenEnd = inputOffsets[batchIdx + 1];
|
|
auto const inputLength = tokenEnd - tokenBegin;
|
|
|
|
for (SizeType tokenIdx = tidx; tokenIdx < maxInputLength; tokenIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const value = (tokenIdx < inputLength) ? inputIds[tokenBegin + tokenIdx] : padId;
|
|
for (SizeType beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
|
|
{
|
|
auto const outputIdx = tc::flat_index3(batchIdx, beamIdx, tokenIdx, beamWidth, maxSeqLength);
|
|
outputIds[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
void invokeCopyPackedInputToOutput(ITensor& outputIds, ITensor const& inputIds, ITensor const& inputOffsets,
|
|
SizeType const maxInputLength, SizeType const padId, CudaStream const& stream)
|
|
{
|
|
TLLM_CHECK_WITH_INFO(
|
|
inputIds.getDataType() == outputIds.getDataType(), "Input and output have different data types");
|
|
|
|
auto const& outputShape = outputIds.getShape();
|
|
TLLM_CHECK_WITH_INFO(
|
|
outputShape.nbDims == 3, common::fmtstr("Output shape must have 3 dimensions, but has %d", outputShape.nbDims));
|
|
|
|
auto const batchSize = static_cast<SizeType>(inputOffsets.getSize()) - 1;
|
|
SizeType const beamWidth = outputShape.d[1];
|
|
SizeType const maxSeqLength = outputShape.d[2];
|
|
|
|
TLLM_CHECK_WITH_INFO(batchSize == outputShape.d[0],
|
|
common::fmtstr(
|
|
"Output ids batch size (%d) does not match inputOffsets batch size (%d)", outputShape.d[0], batchSize));
|
|
TLLM_CHECK_WITH_INFO(maxInputLength < maxSeqLength,
|
|
common::fmtstr(
|
|
"Output sequence length (%d) has to be larger than max input length (%d)", maxSeqLength, maxInputLength));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((maxInputLength + blockSize.x - 1) / blockSize.x, batchSize);
|
|
|
|
copyPackedInputToOutput<<<gridSize, blockSize, 0, stream.get()>>>(bufferCast<SizeType>(outputIds),
|
|
bufferCast<SizeType const>(inputIds), bufferCast<SizeType const>(inputOffsets), padId, batchSize, beamWidth,
|
|
maxInputLength, maxSeqLength);
|
|
}
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
__global__ void scatterTensor(T* output, T const* input, SizeType const batchSize, SizeType const inputRowSize,
|
|
SizeType const outputRowSize, SizeType const beamWidth)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType columnIdx = tidx; columnIdx < inputRowSize; columnIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const inputIdx = batchIdx * inputRowSize + columnIdx;
|
|
auto const value = input[inputIdx];
|
|
SizeType constexpr beamIdx = 0;
|
|
auto const outputIdx = (batchIdx * beamWidth + beamIdx) * outputRowSize + columnIdx;
|
|
output[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void tileTensor(T* output, T const* input, SizeType const batchSize, SizeType const inputRowSize,
|
|
SizeType const outputRowSize, SizeType const beamWidth)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType columnIdx = tidx; columnIdx < inputRowSize; columnIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const inputIdx = batchIdx * inputRowSize + columnIdx;
|
|
auto const value = input[inputIdx];
|
|
for (SizeType beamIdx = 0; beamIdx < beamWidth; ++beamIdx)
|
|
{
|
|
auto const outputIdx = (batchIdx * beamWidth + beamIdx) * outputRowSize + columnIdx;
|
|
output[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
__global__ void tileTensorInPlace(
|
|
T* inputOutput, SizeType const batchSize, SizeType const inputOutputRowSize, SizeType const beamWidth)
|
|
{
|
|
SizeType const tidx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
SizeType const tidy = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
for (SizeType batchIdx = tidy; batchIdx < batchSize; batchIdx += blockDim.y * gridDim.y)
|
|
{
|
|
for (SizeType columnIdx = tidx; columnIdx < inputOutputRowSize; columnIdx += blockDim.x * gridDim.x)
|
|
{
|
|
auto const inputIdx = (batchIdx * beamWidth + 0) * inputOutputRowSize + columnIdx;
|
|
auto const value = inputOutput[inputIdx];
|
|
for (SizeType beamIdx = 1; beamIdx < beamWidth; ++beamIdx)
|
|
{
|
|
auto const outputIdx = (batchIdx * beamWidth + beamIdx) * inputOutputRowSize + columnIdx;
|
|
inputOutput[outputIdx] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
template <typename T>
|
|
void invokeScatterTensor(ITensor& output, ITensor const& input, SizeType beamWidth, CudaStream const& stream)
|
|
{
|
|
auto const& inputShape = input.getShape();
|
|
auto const nbInputRows = inputShape.d[0];
|
|
auto const inputRowSize = static_cast<SizeType>(input.getSize()) / nbInputRows;
|
|
auto const& outputShape = output.getShape();
|
|
auto const nbOutputRows = outputShape.d[0];
|
|
auto const outputRowSize = static_cast<SizeType>(output.getSize()) / nbOutputRows;
|
|
|
|
TLLM_CHECK_WITH_INFO(nbOutputRows == beamWidth * nbInputRows,
|
|
common::fmtstr(
|
|
"nbOutputRows (%d) must be beamWidth (%d) times nbInputRows (%d)", nbOutputRows, beamWidth, nbInputRows));
|
|
TLLM_CHECK_WITH_INFO(outputRowSize >= inputRowSize,
|
|
common::fmtstr("output row size (%d) must be at least input row size (%d)", outputRowSize, inputRowSize));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((inputRowSize + blockSize.x - 1) / blockSize.x, nbInputRows);
|
|
scatterTensor<<<gridSize, blockSize, 0, stream.get()>>>(
|
|
bufferCast<T>(output), bufferCast<T const>(input), nbInputRows, inputRowSize, outputRowSize, beamWidth);
|
|
}
|
|
|
|
void scatterTensor(ITensor& output, ITensor const& input, SizeType beamWidth, CudaStream const& stream)
|
|
{
|
|
switch (input.getDataType())
|
|
{
|
|
case nvinfer1::DataType::kINT32: invokeScatterTensor<SizeType>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kFLOAT: invokeScatterTensor<float>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kHALF: invokeScatterTensor<half>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kINT8: invokeScatterTensor<int8_t>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kFP8: invokeScatterTensor<__nv_fp8_e4m3>(output, input, beamWidth, stream); break;
|
|
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void invokeTileTensor(ITensor& output, ITensor const& input, SizeType const beamWidth, CudaStream const& stream)
|
|
{
|
|
auto const& inputShape = input.getShape();
|
|
auto const nbInputRows = inputShape.d[0];
|
|
auto const inputRowSize = static_cast<SizeType>(input.getSize()) / nbInputRows;
|
|
auto const& outputShape = output.getShape();
|
|
auto const nbOutputRows = outputShape.d[0];
|
|
auto const outputRowSize = static_cast<SizeType>(output.getSize()) / nbOutputRows;
|
|
|
|
TLLM_CHECK_WITH_INFO(nbOutputRows == beamWidth * nbInputRows,
|
|
common::fmtstr(
|
|
"nbOutputRows (%d) must be beamWidth (%d) times nbInputRows (%d)", nbOutputRows, beamWidth, nbInputRows));
|
|
TLLM_CHECK_WITH_INFO(outputRowSize >= inputRowSize,
|
|
common::fmtstr("output row size (%d) must be at least input row size (%d)", outputRowSize, inputRowSize));
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((inputRowSize + blockSize.x - 1) / blockSize.x, nbInputRows);
|
|
tileTensor<<<gridSize, blockSize, 0, stream.get()>>>(
|
|
bufferCast<T>(output), bufferCast<T const>(input), nbInputRows, inputRowSize, outputRowSize, beamWidth);
|
|
}
|
|
|
|
void tileTensor(ITensor& output, ITensor const& input, SizeType beamWidth, CudaStream const& stream)
|
|
{
|
|
switch (input.getDataType())
|
|
{
|
|
case nvinfer1::DataType::kINT32: invokeTileTensor<SizeType>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kFLOAT: invokeTileTensor<float>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kHALF: invokeTileTensor<half>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kINT8: invokeTileTensor<int8_t>(output, input, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kFP8: invokeTileTensor<__nv_fp8_e4m3>(output, input, beamWidth, stream); break;
|
|
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void invokeTileTensorInPlace(ITensor& inputOutput, SizeType const beamWidth, CudaStream const& stream)
|
|
{
|
|
auto const& inputOutputShape = inputOutput.getShape();
|
|
auto const nbOutputRows = inputOutputShape.d[0];
|
|
auto const nbInputRows = nbOutputRows / beamWidth;
|
|
auto const inputOutputRowSize = static_cast<SizeType>(inputOutput.getSize()) / nbOutputRows;
|
|
|
|
dim3 const blockSize(256, 1);
|
|
dim3 const gridSize((inputOutputRowSize + blockSize.x - 1) / blockSize.x, nbInputRows);
|
|
tileTensorInPlace<<<gridSize, blockSize, 0, stream.get()>>>(
|
|
bufferCast<T>(inputOutput), nbInputRows, inputOutputRowSize, beamWidth);
|
|
}
|
|
|
|
void tileTensorInplace(ITensor& tensor, SizeType beamWidth, CudaStream const& stream)
|
|
{
|
|
switch (tensor.getDataType())
|
|
{
|
|
case nvinfer1::DataType::kINT32: invokeTileTensorInPlace<SizeType>(tensor, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kFLOAT: invokeTileTensorInPlace<float>(tensor, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kHALF: invokeTileTensorInPlace<half>(tensor, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kINT8: invokeTileTensorInPlace<int8_t>(tensor, beamWidth, stream); break;
|
|
case nvinfer1::DataType::kFP8: invokeTileTensorInPlace<__nv_fp8_e4m3>(tensor, beamWidth, stream); break;
|
|
default: TLLM_CHECK_WITH_INFO(false, "data type not supported");
|
|
}
|
|
}
|
|
|
|
} // namespace tensorrt_llm::runtime::kernels
|