mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
250 lines
9.8 KiB
Python
250 lines
9.8 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import csv
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from utils import token_encoder
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm.quantization import QuantMode
|
|
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
|
|
|
|
from build import get_engine_name # isort:skip
|
|
|
|
# GPT3 Related variables
|
|
# Reference : https://github.com/NVIDIA/FasterTransformer/blob/main/sample/pytorch/gpt_sample.py
|
|
MERGES_FILE = "merges.txt"
|
|
VOCAB_FILE = "vocab.json"
|
|
|
|
PAD_ID = 50256
|
|
START_ID = 50256
|
|
END_ID = 50256
|
|
|
|
|
|
def read_config(config_path: Path):
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
|
|
remove_input_padding = config['plugin_config']['remove_input_padding']
|
|
world_size = config['builder_config']['tensor_parallel']
|
|
assert world_size == tensorrt_llm.mpi_world_size(), \
|
|
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
|
|
num_heads = config['builder_config']['num_heads'] // world_size
|
|
hidden_size = config['builder_config']['hidden_size'] // world_size
|
|
vocab_size = config['builder_config']['vocab_size']
|
|
num_layers = config['builder_config']['num_layers']
|
|
quant_mode = QuantMode(config['builder_config']['quant_mode'])
|
|
paged_kv_cache = config['plugin_config']['paged_kv_cache']
|
|
tokens_per_block = config['builder_config']['tokens_per_block']
|
|
|
|
model_config = ModelConfig(num_heads=num_heads,
|
|
num_kv_heads=num_heads,
|
|
hidden_size=hidden_size,
|
|
vocab_size=vocab_size,
|
|
num_layers=num_layers,
|
|
gpt_attention_plugin=use_gpt_attention_plugin,
|
|
remove_input_padding=remove_input_padding,
|
|
paged_kv_cache=paged_kv_cache,
|
|
tokens_per_block=tokens_per_block,
|
|
quant_mode=quant_mode)
|
|
|
|
dtype = config['builder_config']['precision']
|
|
max_input_len = config['builder_config']['max_input_len']
|
|
|
|
return model_config, world_size, dtype, max_input_len
|
|
|
|
|
|
def parse_input(input_text: str, input_file: str, tokenizer, pad_id: int,
|
|
remove_input_padding: bool):
|
|
input_tokens = []
|
|
if input_file is None:
|
|
input_tokens.append(tokenizer.encode(input_text))
|
|
else:
|
|
if input_file.endswith('.csv'):
|
|
with open(input_file, 'r') as csv_file:
|
|
csv_reader = csv.reader(csv_file, delimiter=',')
|
|
for line in csv_reader:
|
|
input_tokens.append(np.array(line, dtype='int32'))
|
|
elif input_file.endswith('.npy'):
|
|
inputs = np.load(input_file)
|
|
for row in inputs:
|
|
row = row[row != pad_id]
|
|
input_tokens.append(row)
|
|
else:
|
|
print('Input file format not supported.')
|
|
raise SystemExit
|
|
|
|
input_ids = None
|
|
input_lengths = torch.tensor([len(x) for x in input_tokens],
|
|
dtype=torch.int32,
|
|
device='cuda')
|
|
if remove_input_padding:
|
|
input_ids = np.concatenate(input_tokens)
|
|
input_ids = torch.tensor(input_ids, dtype=torch.int32,
|
|
device='cuda').unsqueeze(0)
|
|
else:
|
|
input_ids = torch.nested.to_padded_tensor(
|
|
torch.nested.nested_tensor(input_tokens, dtype=torch.int32),
|
|
pad_id).cuda()
|
|
|
|
return input_ids, input_lengths
|
|
|
|
|
|
def print_output(output_ids, cum_log_probs, input_lengths, sequence_lengths,
|
|
tokenizer, output_csv, output_npy):
|
|
|
|
num_beams = output_ids.size(1)
|
|
if output_csv is None and output_npy is None:
|
|
for b in range(input_lengths.size(0)):
|
|
inputs = output_ids[b][0][:input_lengths[b]].tolist()
|
|
input_text = tokenizer.decode(inputs)
|
|
print(f'Input {b}: \"{input_text}\"')
|
|
for beam in range(num_beams):
|
|
output_begin = input_lengths[b]
|
|
output_end = sequence_lengths[b][beam]
|
|
outputs = output_ids[b][beam][output_begin:output_end].tolist()
|
|
output_text = tokenizer.decode(outputs)
|
|
if num_beams > 1:
|
|
cum_log_prob = cum_log_probs[b][beam]
|
|
print(
|
|
f'Output {b}, beam {beam}: \"{output_text}\" (cum_log_prob: {cum_log_prob})'
|
|
)
|
|
else:
|
|
print(f'Output {b}: \"{output_text}\"')
|
|
|
|
output_ids = output_ids.reshape((-1, output_ids.size(2)))
|
|
|
|
if output_csv is not None:
|
|
output_file = Path(output_csv)
|
|
output_file.parent.mkdir(exist_ok=True, parents=True)
|
|
outputs = output_ids.tolist()
|
|
with open(output_file, 'w') as csv_file:
|
|
writer = csv.writer(csv_file, delimiter=',')
|
|
writer.writerows(outputs)
|
|
|
|
if output_npy is not None:
|
|
output_file = Path(output_npy)
|
|
output_file.parent.mkdir(exist_ok=True, parents=True)
|
|
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
|
|
np.save(output_file, outputs)
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--max_output_len', type=int, required=True)
|
|
parser.add_argument('--log_level', type=str, default='error')
|
|
parser.add_argument('--engine_dir', type=str, default='gpt_outputs')
|
|
parser.add_argument('--num_beams', type=int, default=1)
|
|
parser.add_argument('--min_length', type=int, default=1)
|
|
parser.add_argument('--input_text',
|
|
type=str,
|
|
default='Born in north-east France, Soyer trained as a')
|
|
parser.add_argument(
|
|
'--input_tokens',
|
|
dest='input_file',
|
|
type=str,
|
|
help=
|
|
'CSV or Numpy file containing tokenized input. Alternative to text input.',
|
|
default=None)
|
|
parser.add_argument('--output_csv',
|
|
type=str,
|
|
help='CSV file where the tokenized output is stored.',
|
|
default=None)
|
|
parser.add_argument('--output_npy',
|
|
type=str,
|
|
help='Numpy file where the tokenized output is stored.',
|
|
default=None)
|
|
parser.add_argument(
|
|
'--hf_model_location',
|
|
type=str,
|
|
default="gptj",
|
|
help=
|
|
'The hugging face model location stores the merges.txt and vocab.json to create tokenizer'
|
|
)
|
|
return parser.parse_args()
|
|
|
|
|
|
def generate(
|
|
max_output_len: int,
|
|
log_level: str = 'error',
|
|
engine_dir: str = 'gpt_outputs',
|
|
input_text: str = 'Born in north-east France, Soyer trained as a',
|
|
input_file: str = None,
|
|
output_csv: str = None,
|
|
output_npy: str = None,
|
|
hf_model_location: str = 'gptj',
|
|
num_beams: int = 1,
|
|
min_length: int = 1,
|
|
):
|
|
tensorrt_llm.logger.set_level(log_level)
|
|
|
|
engine_dir = Path(engine_dir)
|
|
config_path = engine_dir / 'config.json'
|
|
model_config, world_size, dtype, max_input_len = read_config(config_path)
|
|
|
|
runtime_rank = tensorrt_llm.mpi_rank()
|
|
runtime_mapping = tensorrt_llm.Mapping(world_size,
|
|
runtime_rank,
|
|
tp_size=world_size)
|
|
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
|
|
|
|
vocab_file = Path(hf_model_location) / VOCAB_FILE
|
|
merges_file = Path(hf_model_location) / MERGES_FILE
|
|
assert vocab_file.is_file(), f"{vocab_file} does not exist"
|
|
assert merges_file.is_file(), f"{merges_file} does not exist"
|
|
tokenizer = token_encoder.get_encoder(vocab_file, merges_file)
|
|
|
|
sampling_config = SamplingConfig(end_id=END_ID,
|
|
pad_id=PAD_ID,
|
|
num_beams=num_beams,
|
|
min_length=min_length)
|
|
|
|
engine_name = get_engine_name('gptj', dtype, world_size, runtime_rank)
|
|
serialize_path = Path(engine_dir) / engine_name
|
|
with open(serialize_path, 'rb') as f:
|
|
engine_buffer = f.read()
|
|
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
|
|
engine_buffer,
|
|
runtime_mapping)
|
|
|
|
input_ids, input_lengths = parse_input(input_text, input_file, tokenizer,
|
|
PAD_ID,
|
|
model_config.remove_input_padding)
|
|
|
|
max_input_length = torch.max(input_lengths).item()
|
|
decoder.setup(input_lengths.size(0), max_input_length, max_output_len)
|
|
|
|
output_ids, sequence_lengths = decoder.decode(
|
|
input_ids,
|
|
input_lengths,
|
|
sampling_config,
|
|
do_return_sequence_length=True)
|
|
torch.cuda.synchronize()
|
|
|
|
cum_log_probs = decoder.cum_log_probs if num_beams > 1 else None
|
|
|
|
if runtime_rank == 0:
|
|
print_output(output_ids, cum_log_probs, input_lengths, sequence_lengths,
|
|
tokenizer, output_csv, output_npy)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
generate(**vars(args))
|