TensorRT-LLMs/examples/llama/build.py
2023-09-20 00:29:41 -07:00

644 lines
26 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import time
from pathlib import Path
import tensorrt as trt
import torch
import torch.multiprocessing as mp
from transformers import LlamaConfig, LlamaForCausalLM
from weight import (load_from_binary, load_from_groupwise_safetensors_llama,
load_from_hf_llama, load_from_meta_llama)
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_trt
from tensorrt_llm.builder import Builder
from tensorrt_llm.layers.attention import PositionEmbeddingType
from tensorrt_llm.logger import logger
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import (fp8_quantize, smooth_quantize,
weight_only_groupwise_quantize,
weight_only_quantize)
from tensorrt_llm.network import net_guard
from tensorrt_llm.plugin.plugin import ContextFMHAType
from tensorrt_llm.quantization import QuantMode
from weight import parse_ft_config # isort:skip
MODEL_NAME = "llama"
# 2 routines: get_engine_name, serialize_engine
# are direct copy from gpt example, TODO: put in utils?
import onnx
import tensorrt as trt
from onnx import TensorProto, helper
def trt_dtype_to_onnx(dtype):
if dtype == trt.float16:
return TensorProto.DataType.FLOAT16
elif dtype == trt.float32:
return TensorProto.DataType.FLOAT
elif dtype == trt.int32:
return TensorProto.DataType.INT32
else:
raise TypeError("%s is not supported" % dtype)
def to_onnx(network, path):
inputs = []
for i in range(network.num_inputs):
network_input = network.get_input(i)
inputs.append(
helper.make_tensor_value_info(
network_input.name, trt_dtype_to_onnx(network_input.dtype),
list(network_input.shape)))
outputs = []
for i in range(network.num_outputs):
network_output = network.get_output(i)
outputs.append(
helper.make_tensor_value_info(
network_output.name, trt_dtype_to_onnx(network_output.dtype),
list(network_output.shape)))
nodes = []
for i in range(network.num_layers):
layer = network.get_layer(i)
layer_inputs = []
for j in range(layer.num_inputs):
ipt = layer.get_input(j)
if ipt is not None:
layer_inputs.append(layer.get_input(j).name)
layer_outputs = [
layer.get_output(j).name for j in range(layer.num_outputs)
]
nodes.append(
helper.make_node(str(layer.type),
name=layer.name,
inputs=layer_inputs,
outputs=layer_outputs,
domain="com.nvidia"))
onnx_model = helper.make_model(helper.make_graph(nodes,
'attention',
inputs,
outputs,
initializer=None),
producer_name='NVIDIA')
onnx.save(onnx_model, path)
def get_engine_name(model, dtype, tp_size, rank):
return '{}_{}_tp{}_rank{}.engine'.format(model, dtype, tp_size, rank)
def serialize_engine(engine, path):
logger.info(f'Serializing engine to {path}...')
tik = time.time()
with open(path, 'wb') as f:
f.write(bytearray(engine))
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Engine serialized. Total time: {t}')
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--ft_model_dir', type=str, default=None)
parser.add_argument('--meta_ckpt_dir', type=str, default=None)
parser.add_argument('--quant_safetensors_path', type=str, default=None)
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--timing_cache',
type=str,
default='model.cache',
help=
'The path of to read timing cache from, will be ignored if the file does not exist'
)
parser.add_argument('--log_level', type=str, default='info')
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--n_layer', type=int, default=32)
parser.add_argument('--n_positions', type=int, default=2048)
parser.add_argument('--n_embd', type=int, default=4096)
parser.add_argument('--n_head', type=int, default=32)
parser.add_argument('--n_kv_head', type=int, default=None)
parser.add_argument('--multiple_of', type=int, default=256)
parser.add_argument('--ffn_dim_multiplier', type=float, default=1.0)
parser.add_argument('--inter_size', type=int, default=None)
parser.add_argument('--hidden_act', type=str, default='silu')
parser.add_argument('--max_batch_size', type=int, default=8)
parser.add_argument('--max_input_len', type=int, default=2048)
parser.add_argument('--max_output_len', type=int, default=512)
parser.add_argument('--max_beam_width', type=int, default=1)
parser.add_argument('--use_gpt_attention_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_gemm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'bfloat16', 'float32'])
parser.add_argument('--use_rmsnorm_plugin',
nargs='?',
const='float16',
type=str,
default=False,
choices=['float16', 'float32', 'bfloat16'])
parser.add_argument('--parallel_build', default=False, action='store_true')
parser.add_argument('--enable_context_fmha',
default=False,
action='store_true')
parser.add_argument('--enable_context_fmha_fp32_acc',
default=False,
action='store_true')
parser.add_argument('--visualize', default=False, action='store_true')
parser.add_argument('--enable_debug_output',
default=False,
action='store_true')
parser.add_argument('--gpus_per_node', type=int, default=8)
parser.add_argument('--builder_opt', type=int, default=None)
parser.add_argument(
'--output_dir',
type=str,
default='llama_outputs',
help=
'The path to save the serialized engine files, timing cache file and model configs'
)
parser.add_argument('--remove_input_padding',
default=False,
action='store_true')
# Arguments related to the quantization of the model.
parser.add_argument(
'--use_smooth_quant',
default=False,
action="store_true",
help=
'Use the SmoothQuant method to quantize activations and weights for the various GEMMs.'
'See --per_channel and --per_token for finer-grained quantization options.'
)
parser.add_argument(
'--per_channel',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_group',
default=False,
action="store_true",
help=
'By default, we use a single static scaling factor to scale weights in the int4 range. '
'per_group chooses at run time, and for each group, a custom scaling factor. '
'The flag is built for GPTQ/AWQ quantization.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=1, # Meta does TP on hidden dim
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hiddem dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--enable_fp8',
default=False,
action='store_true',
help='Use FP8 Linear layer for Attention QKV/Dense and MLP.')
parser.add_argument(
'--fp8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. fp8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--use_inflight_batching',
action="store_true",
default=False,
help="Activates inflight batching mode of gptAttentionPlugin.")
parser.add_argument(
'--paged_kv_cache',
action="store_true",
default=False,
help=
'By default we use contiguous KV cache. By setting this flag you enable paged KV cache'
)
parser.add_argument('--tokens_per_block',
type=int,
default=64,
help='Number of tokens per block in paged KV cache')
args = parser.parse_args()
tensorrt_llm.logger.set_level(args.log_level)
assert not (
args.use_smooth_quant and args.use_weight_only
), "You cannot enable both SmoothQuant and INT8 weight-only together."
if args.use_inflight_batching:
assert args.use_gpt_attention_plugin, "You have to use GPT attention plugin for in-flight batching mode"
assert args.paged_kv_cache, "You have to use paged kv cache for in-flight batching mode"
assert args.remove_input_padding, "You have to remove input padding for in-flight batching"
if args.use_smooth_quant:
args.quant_mode = QuantMode.use_smooth_quant(args.per_token,
args.per_channel)
elif args.use_weight_only:
if args.per_group:
args.quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True)
else:
args.quant_mode = QuantMode.use_weight_only(
args.weight_only_precision == 'int4')
else:
args.quant_mode = QuantMode(0)
if args.int8_kv_cache:
args.quant_mode = args.quant_mode.set_int8_kv_cache()
elif args.fp8_kv_cache:
args.quant_mode = args.quant_mode.set_fp8_kv_cache()
if args.enable_fp8:
args.quant_mode = args.quant_mode.set_fp8_qdq()
if args.inter_size is None:
# this should not be need when loading a real model
# but it is helpful when creating a dummy model without loading any real weights
n_embd = int(4 * args.n_embd * 2 / 3)
args.inter_size = args.multiple_of * (
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1) //
args.multiple_of)
logger.info(f"Setting inter_size to {args.inter_size}.")
# Since gpt_attenttion_plugin is the only way to apply RoPE now,
# force use the plugin for now with the correct data type.
args.use_gpt_attention_plugin = args.dtype
if args.model_dir is not None:
hf_config = LlamaConfig.from_pretrained(args.model_dir)
args.inter_size = hf_config.intermediate_size # override the inter_size for LLaMA
args.n_embd = hf_config.hidden_size
args.n_head = hf_config.num_attention_heads
if hasattr(hf_config, "num_key_value_heads"):
args.n_kv_head = hf_config.num_key_value_heads
args.n_layer = hf_config.num_hidden_layers
args.n_positions = hf_config.max_position_embeddings
args.vocab_size = hf_config.vocab_size
args.hidden_act = hf_config.hidden_act
elif args.meta_ckpt_dir is not None:
with open(Path(args.meta_ckpt_dir, "params.json")) as fp:
meta_config: dict = json.load(fp)
args.n_embd = meta_config["dim"]
args.n_head = meta_config["n_heads"]
args.n_layer = meta_config["n_layers"]
args.n_kv_head = meta_config.get("n_kv_heads", args.n_head)
args.multiple_of = meta_config["multiple_of"]
args.ffn_dim_multiplier = meta_config.get("ffn_dim_multiplier", 1)
n_embd = int(4 * args.n_embd * 2 / 3)
args.inter_size = args.multiple_of * (
(int(n_embd * args.ffn_dim_multiplier) + args.multiple_of - 1) //
args.multiple_of)
elif args.ft_model_dir is not None:
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size = parse_ft_config(
Path(args.ft_model_dir) / "config.ini")
args.inter_size = inter_size # override the inter_size for LLaMA
args.n_embd = n_embd
args.n_head = n_head
args.n_layer = n_layer
args.n_positions = n_positions
args.vocab_size = vocab_size
args.hidden_act = hidden_act
assert args.use_gpt_attention_plugin, "LLaMa must use gpt attention plugin"
if args.n_kv_head is None:
args.n_kv_head = args.n_head
elif args.n_kv_head != args.n_head:
assert (args.n_head % args.n_kv_head) == 0, \
"MQA/GQA requires the number of heads to be divisible by the number of K/V heads."
assert (args.n_kv_head % args.world_size) == 0 or (args.world_size % args.n_kv_head) == 0, \
"MQA/GQA requires either the number of K/V heads to be divisible by the number of GPUs OR " \
"the number of GPUs to be divisible by the number of K/V heads."
if args.dtype == 'bfloat16':
assert args.use_gemm_plugin, "Please use gemm plugin when dtype is bfloat16"
return args
def build_rank_engine(builder: Builder,
builder_config: tensorrt_llm.builder.BuilderConfig,
engine_name, rank, args):
'''
@brief: Build the engine on the given rank.
@param rank: The rank to build the engine.
@param args: The cmd line arguments.
@return: The built engine.
'''
kv_dtype = str_dtype_to_trt(args.dtype)
# Initialize Module
tensorrt_llm_llama = tensorrt_llm.models.LLaMAForCausalLM(
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
dtype=kv_dtype,
mlp_hidden_size=args.inter_size,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
mapping=Mapping(world_size=args.world_size,
rank=rank,
tp_size=args.world_size), # TP only
use_parallel_embedding=args.use_parallel_embedding,
embedding_sharding_dim=args.embedding_sharding_dim,
quant_mode=args.quant_mode)
if args.use_smooth_quant:
tensorrt_llm_llama = smooth_quantize(tensorrt_llm_llama,
args.quant_mode)
elif args.use_weight_only and args.weight_only_precision == 'int8':
tensorrt_llm_llama = weight_only_quantize(tensorrt_llm_llama,
QuantMode.use_weight_only())
elif args.use_weight_only and args.weight_only_precision == 'int4':
if args.per_group:
tensorrt_llm_llama = weight_only_groupwise_quantize(
model=tensorrt_llm_llama,
quant_mode=QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
per_group=True,
use_int4_weights=True),
group_size=128,
zero=True)
else:
tensorrt_llm_llama = weight_only_quantize(
tensorrt_llm_llama,
QuantMode.use_weight_only(use_int4_weights=True))
elif args.enable_fp8 or args.fp8_kv_cache:
# Dummy scales only
tensorrt_llm_llama = fp8_quantize(tensorrt_llm_llama, args.quant_mode)
if args.per_group:
load_from_groupwise_safetensors_llama(
tensorrt_llm_llama=tensorrt_llm_llama,
quant_safetensors_path=args.quant_safetensors_path,
tensor_parallel=args.world_size,
rank=rank,
dtype="float16")
elif args.meta_ckpt_dir is not None:
load_from_meta_llama(tensorrt_llm_llama, args.meta_ckpt_dir, rank,
args.world_size, args.dtype)
elif args.model_dir is not None:
logger.info(f'Loading HF LLaMA ... from {args.model_dir}')
tik = time.time()
hf_llama = LlamaForCausalLM.from_pretrained(
args.model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu"
}, # Load to CPU memory
torch_dtype="auto")
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'HF LLaMA loaded. Total time: {t}')
load_from_hf_llama(tensorrt_llm_llama,
hf_llama,
rank,
args.world_size,
dtype=args.dtype)
del hf_llama
elif args.ft_model_dir is not None:
# TODO add multi_query_mode
load_from_binary(tensorrt_llm_llama,
args.ft_model_dir,
rank,
args.world_size,
fp16=(args.dtype == 'float16'),
multi_query_mode=(args.n_kv_head != args.n_head))
# Module -> Network
network = builder.create_network()
network.trt_network.name = engine_name
if args.use_gpt_attention_plugin:
network.plugin_config.set_gpt_attention_plugin(
dtype=args.use_gpt_attention_plugin)
if args.use_gemm_plugin:
network.plugin_config.set_gemm_plugin(dtype=args.use_gemm_plugin)
if args.use_rmsnorm_plugin:
network.plugin_config.set_rmsnorm_plugin(dtype=args.use_rmsnorm_plugin)
if args.use_inflight_batching:
network.plugin_config.enable_in_flight_batching()
# Quantization plugins.
if args.use_smooth_quant:
network.plugin_config.set_smooth_quant_gemm_plugin(dtype=args.dtype)
network.plugin_config.set_rmsnorm_quantization_plugin(dtype=args.dtype)
network.plugin_config.set_quantize_tensor_plugin()
network.plugin_config.set_quantize_per_token_plugin()
assert not (args.enable_context_fmha and args.enable_context_fmha_fp32_acc)
if args.enable_context_fmha:
network.plugin_config.set_context_fmha(ContextFMHAType.enabled)
if args.enable_context_fmha_fp32_acc:
network.plugin_config.set_context_fmha(
ContextFMHAType.enabled_with_fp32_acc)
if args.use_weight_only:
if args.per_group:
network.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(
dtype='float16')
else:
network.plugin_config.set_weight_only_quant_matmul_plugin(
dtype='float16')
if args.world_size > 1:
network.plugin_config.set_nccl_plugin(args.dtype)
if args.remove_input_padding:
network.plugin_config.enable_remove_input_padding()
if args.paged_kv_cache:
network.plugin_config.enable_paged_kv_cache()
with net_guard(network):
# Prepare
network.set_named_parameters(tensorrt_llm_llama.named_parameters())
# Forward
inputs = tensorrt_llm_llama.prepare_inputs(
args.max_batch_size,
args.max_input_len,
args.max_output_len,
True,
args.max_beam_width,
paged_kv_cache=args.paged_kv_cache,
tokens_per_block=args.tokens_per_block)
tensorrt_llm_llama(*inputs)
if args.enable_debug_output:
# mark intermediate nodes' outputs
for k, v in tensorrt_llm_llama.named_network_outputs():
v = v.trt_tensor
v.name = k
network.trt_network.mark_output(v)
v.dtype = kv_dtype
if args.visualize:
model_path = os.path.join(args.output_dir, 'test.onnx')
to_onnx(network.trt_network, model_path)
engine = None
# Network -> Engine
engine = builder.build_engine(network, builder_config)
if rank == 0:
config_path = os.path.join(args.output_dir, 'config.json')
builder.save_config(builder_config, config_path)
return engine
def build(rank, args):
torch.cuda.set_device(rank % args.gpus_per_node)
logger.set_level(args.log_level)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
# when doing serializing build, all ranks share one engine
builder = Builder()
cache = None
for cur_rank in range(args.world_size):
# skip other ranks if parallel_build is enabled
if args.parallel_build and cur_rank != rank:
continue
builder_config = builder.create_builder_config(
name=MODEL_NAME,
precision=args.dtype,
timing_cache=args.timing_cache if cache is None else cache,
tensor_parallel=args.world_size, # TP only
parallel_build=args.parallel_build,
num_layers=args.n_layer,
num_heads=args.n_head,
num_kv_heads=args.n_kv_head,
hidden_size=args.n_embd,
vocab_size=args.vocab_size,
hidden_act=args.hidden_act,
max_position_embeddings=args.n_positions,
max_batch_size=args.max_batch_size,
max_input_len=args.max_input_len,
max_output_len=args.max_output_len,
int8=(args.quant_mode.has_act_and_weight_quant()
or args.quant_mode.has_int8_kv_cache()),
fp8=args.quant_mode.has_fp8_qdq(),
opt_level=args.builder_opt,
paged_kv_cache=args.paged_kv_cache,
tokens_per_block=args.tokens_per_block)
engine_name = get_engine_name(MODEL_NAME, args.dtype, args.world_size,
cur_rank)
engine = build_rank_engine(builder, builder_config, engine_name,
cur_rank, args)
assert engine is not None, f'Failed to build engine for rank {cur_rank}'
if cur_rank == 0:
# Use in-memory timing cache for multiple builder passes.
if not args.parallel_build:
cache = builder_config.trt_builder_config.get_timing_cache()
serialize_engine(engine, os.path.join(args.output_dir, engine_name))
if rank == 0:
ok = builder.save_timing_cache(
builder_config, os.path.join(args.output_dir, "model.cache"))
assert ok, "Failed to save timing cache."
if __name__ == '__main__':
args = parse_arguments()
tik = time.time()
if args.parallel_build and args.world_size > 1 and \
torch.cuda.device_count() >= args.world_size:
logger.warning(
f'Parallelly build TensorRT engines. Please make sure that all of the {args.world_size} GPUs are totally free.'
)
mp.spawn(build, nprocs=args.world_size, args=(args, ))
else:
args.parallel_build = False
logger.info('Serially build TensorRT engines.')
build(0, args)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
logger.info(f'Total time of building all {args.world_size} engines: {t}')