TensorRT-LLMs/examples/llama/weight.py
2023-09-20 00:29:41 -07:00

840 lines
38 KiB
Python

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from pathlib import Path
import numpy as np
import torch
from safetensors import safe_open
import tensorrt_llm
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
from tensorrt_llm.models import LLaMAForCausalLM
from tensorrt_llm.quantization import QuantMode
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx])
else:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
def dup_kv_weight(v, num_head, tp_size):
assert tp_size % num_head == 0
reps = tp_size // num_head
head_size = v.shape[0] // num_head
v = v.reshape(num_head, head_size,
-1)[:, None, :, :].expand(num_head, reps, head_size,
v.shape[1])
return v.reshape(num_head * reps * head_size, -1).clone()
def parse_ft_config(ini_file):
gpt_config = configparser.ConfigParser()
gpt_config.read(ini_file)
n_embd = gpt_config.getint('llama', 'hidden_size')
n_head = gpt_config.getint('llama', 'num_attention_heads')
n_layer = gpt_config.getint('llama', 'num_hidden_layers')
n_positions = gpt_config.getint('llama', 'max_position_embeddings')
vocab_size = gpt_config.getint('llama', 'vocab_size')
hidden_act = gpt_config.get('llama', 'hidden_act')
inter_size = gpt_config.getint('llama', 'intermediate_size', fallback=None)
if inter_size is None:
inter_size = 4 * n_embd
return n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size
def load_from_hf_llama(tensorrt_llm_llama: tensorrt_llm.models.LLaMAForCausalLM,
hf_llama,
rank=0,
tensor_parallel=1,
dtype="float32"):
tensorrt_llm.logger.info('Loading weights from HF LLaMA...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
use_weight_only = quant_mode.is_weight_only()
num_kv_heads = tensorrt_llm_llama.num_kv_heads
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
model_params = dict(hf_llama.named_parameters())
for l in range(hf_llama.config.num_hidden_layers):
prefix = f'model.layers.{l}.self_attn.'
q_weight = model_params[prefix + 'q_proj.weight']
k_weight = model_params[prefix + 'k_proj.weight']
v_weight = model_params[prefix + 'v_proj.weight']
if not mha_mode:
head_size = tensorrt_llm_llama.hidden_size // tensorrt_llm_llama.num_heads
if num_kv_heads < tensor_parallel:
# duplicate the KV heads up to tensor_parallel
k_weight = dup_kv_weight(k_weight, num_kv_heads,
tensor_parallel)
v_weight = dup_kv_weight(v_weight, num_kv_heads,
tensor_parallel)
assert (k_weight.shape[0] % (tensor_parallel * head_size)) == 0
assert (v_weight.shape[0] % (tensor_parallel * head_size)) == 0
qkv_weight = [q_weight, k_weight, v_weight]
else:
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
model_params[prefix + 'qkv_proj.weight'] = qkv_weight
torch_dtype = str_dtype_to_torch(dtype)
for k, v in model_params.items():
if isinstance(v, list):
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
else:
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if 'model.embed_tokens.weight' in k:
if tensorrt_llm_llama.use_parallel_embedding:
v = split(v, tensor_parallel, rank,
tensorrt_llm_llama.embedding_sharding_dim)
tensorrt_llm_llama.vocab_embedding.weight.value = v
elif 'model.norm.weight' in k:
tensorrt_llm_llama.ln_f.weight.value = v
elif 'lm_head.weight' in k:
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if idx >= tensorrt_llm_llama.num_layers:
continue
if 'input_layernorm.weight' in k:
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
elif 'post_attention_layernorm.weight' in k:
dst = tensorrt_llm_llama.layers[idx].post_layernorm.weight
dst.value = v
elif 'self_attn.qkv_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].attention.qkv.weight
if not mha_mode:
assert isinstance(v, list) and len(v) == 3
wq = split(v[0], tensor_parallel, rank)
wk = split(v[1], tensor_parallel, rank)
wv = split(v[2], tensor_parallel, rank)
split_v = np.concatenate((wq, wk, wv))
else:
q_emb = v.shape[0] // 3
model_emb = v.shape[1]
v = v.reshape(3, q_emb, model_emb)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (q_emb // tensor_parallel),
model_emb)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'self_attn.o_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].attention.dense.weight
split_v = split(v, tensor_parallel, rank, dim=1)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.up_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].mlp.gate.weight
split_v = split(v, tensor_parallel, rank, dim=0)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].mlp.gate.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.down_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].mlp.proj.weight
split_v = split(v, tensor_parallel, rank, dim=1)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
elif 'mlp.gate_proj.weight' in k:
dst = tensorrt_llm_llama.layers[idx].mlp.fc.weight
split_v = split(v, tensor_parallel, rank, dim=0)
if use_weight_only:
v = np.ascontiguousarray(split_v.transpose())
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(v), plugin_weight_only_quant_type)
# workaround for trt not supporting int8 inputs in plugins currently
dst.value = processed_torch_weights.view(
dtype=torch.float32).numpy()
scales = tensorrt_llm_llama.layers[
idx].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(split_v)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
return
def load_from_meta_llama(
tensorrt_llm_llama: tensorrt_llm.models.LLaMAForCausalLM,
meta_ckpt_dir,
rank=0,
tensor_parallel=1,
dtype="float32"):
torch_dtype = str_dtype_to_torch(dtype)
def gather_ckpts(ckpts):
gathered = {}
for k in ckpts[0]:
d = 0
if any([n in k for n in ["wo", "w2", "tok"]]):
d = 1
if "norm" in k or "rope" in k: # no TP
gathered[k] = ckpts[0][k].clone()
else:
gathered[k] = torch.cat([pt[k] for pt in ckpts], dim=d).clone()
return gathered
def split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank):
split_ckpt = {}
for k in ckpt:
d = 0
if any([n in k for n in ["wo", "w2", "tok"]]):
d = 1
if "norm" in k or "rope" in k: # no TP
split_ckpt[k] = ckpt[k].clone()
elif tensorrt_llm_llama.num_kv_heads < tensor_parallel and any(
[n in k for n in ["wk", "wv"]]):
assert tensor_parallel % tensorrt_llm_llama.num_kv_heads == 0
# special case: we need to duplicate KV head
tmp = dup_kv_weight(ckpt[k], tensorrt_llm_llama.num_kv_heads,
tensor_parallel)
split_ckpt[k] = torch.split(tmp,
tmp.shape[d] // ranks_per_ckpt,
dim=d)[ckpt_rank].clone()
else:
split_ckpt[k] = torch.split(ckpt[k],
ckpt[k].shape[d] // ranks_per_ckpt,
dim=d)[ckpt_rank].clone()
return split_ckpt
def get_current_weights(num_ckpts):
if num_ckpts > tensor_parallel:
# combine ckpts
assert (num_ckpts % tensor_parallel) == 0
nf = num_ckpts // tensor_parallel
fs = nf * rank
file_ids = list(range(fs, fs + nf))
ckpts = []
for f in file_ids:
ckpt = torch.load(Path(meta_ckpt_dir,
f"consolidated.{f:02d}.pth"),
map_location="cpu")
ckpts.append(ckpt)
return gather_ckpts(ckpts)
elif num_ckpts < tensor_parallel:
# split ckpt
assert (tensor_parallel % num_ckpts) == 0
ranks_per_ckpt = tensor_parallel // num_ckpts
ckpt_fid = rank // ranks_per_ckpt
ckpt_rank = rank % ranks_per_ckpt
nH_per_ckpt = tensorrt_llm_llama.num_heads // num_ckpts
assert (nH_per_ckpt % ranks_per_ckpt) == 0
ckpt = torch.load(Path(meta_ckpt_dir,
f"consolidated.{ckpt_fid:02d}.pth"),
map_location="cpu")
return split_ckpt(ckpt, ranks_per_ckpt, ckpt_rank)
# num_ckpts == tensor_parallel, 1:1 mapping from files to TP
return torch.load(Path(meta_ckpt_dir, f"consolidated.{rank:02d}.pth"),
map_location="cpu")
def permute(w, nH, d, dH):
# due to MQA's wk, nH*dH != d could be true
return w.view(nH, dH // 2, 2, d).transpose(1, 2).reshape(nH * dH, d)
if not hasattr(load_from_meta_llama, "saved_embed"):
load_from_meta_llama.saved_embed = None
def gather_embedding(cur_embed, name: str, num_ckpts):
if tensor_parallel == 1:
# even if num_ckpts > 1, get_current_weights will already have it gathered
return cur_embed
if load_from_meta_llama.saved_embed is None:
embeds = [None] * num_ckpts
for i in range(num_ckpts):
ckpt = torch.load(Path(meta_ckpt_dir,
f"consolidated.{i:02d}.pth"),
map_location="cpu")
embeds[i] = ckpt[name]
embed = torch.cat(embeds, dim=1).to(torch_dtype)
load_from_meta_llama.saved_embed = torch_to_numpy(
embed) # cache the embedding, not needed if no refit
return load_from_meta_llama.saved_embed
tensorrt_llm.logger.info('Loading weights from Meta LLaMA checkpoints ...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
torch.int8
elif quant_mode.is_int4_weight_only():
torch.quint4x2
quant_mode.is_weight_only()
num_kv_heads = tensorrt_llm_llama.num_kv_heads
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
ckpts = list(Path(meta_ckpt_dir).glob("consolidated.*.pth"))
num_ckpts = len(ckpts)
# llama/llama2 doesn't have MQA. So, simplifying loader logic by not worrying about it.
assert num_kv_heads > 1 or num_kv_heads >= num_ckpts, \
f"We don't know how the {num_kv_heads} KV heads are distributed among {num_ckpts} checkpoints."
head_size = tensorrt_llm_llama.hidden_size // tensorrt_llm_llama.num_heads
ckpt = get_current_weights(num_ckpts)
for l in range(tensorrt_llm_llama.num_layers):
prefix = f'layers.{l}.attention.'
q_weight = permute(ckpt[prefix + 'wq.weight'].clone(),
nH=(tensorrt_llm_llama.num_heads // tensor_parallel),
d=tensorrt_llm_llama.hidden_size,
dH=head_size)
if num_kv_heads < tensor_parallel and num_ckpts >= tensor_parallel:
assert tensor_parallel % num_kv_heads == 0
assert False, "Not supported yet"
k_weight = permute(ckpt[prefix + 'wk.weight'].clone(),
nH=((num_kv_heads + tensor_parallel - 1) //
tensor_parallel),
d=tensorrt_llm_llama.hidden_size,
dH=head_size)
v_weight = ckpt[prefix + 'wv.weight'].clone()
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
ckpt[prefix + 'qkv.weight'] = qkv_weight
for k, v in ckpt.items():
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if "tok_embeddings" in k:
if not tensorrt_llm_llama.use_parallel_embedding:
v = gather_embedding(v, k, num_ckpts)
elif tensorrt_llm_llama.embedding_sharding_dim == 0:
# this needs a gather and then resplit along different dims
v = gather_embedding(v, k, num_ckpts)
v = split(v, tensor_parallel, rank, 0)
tensorrt_llm_llama.vocab_embedding.weight.value = v
elif "output" in k:
tensorrt_llm_llama.lm_head.weight.value = v
elif k == "norm.weight":
tensorrt_llm_llama.ln_f.weight.value = v
else:
# layer specific weights
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if idx >= tensorrt_llm_llama.num_layers:
continue
if 'attention_norm.weight' in k:
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
elif 'ffn_norm.weight' in k:
tensorrt_llm_llama.layers[idx].post_layernorm.weight.value = v
elif 'feed_forward.w3.weight' in k:
tensorrt_llm_llama.layers[idx].mlp.gate.weight.value = v
elif 'feed_forward.w2.weight' in k:
tensorrt_llm_llama.layers[idx].mlp.proj.weight.value = v
elif 'feed_forward.w1.weight' in k:
tensorrt_llm_llama.layers[idx].mlp.fc.weight.value = v
elif 'attention.wo.weight' in k:
tensorrt_llm_llama.layers[idx].attention.dense.weight.value = v
elif 'attention.qkv.weight' in k:
tensorrt_llm_llama.layers[idx].attention.qkv.weight.value = v
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
return
def load_from_binary(tensorrt_llm_llama: LLaMAForCausalLM,
dir_path,
rank=0,
tensor_parallel=1,
fp16=False,
multi_query_mode=False):
tensorrt_llm.logger.info('Loading weights from FT...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_llama, 'quant_mode', QuantMode(0))
n_embd, n_head, n_layer, n_positions, vocab_size, hidden_act, inter_size = parse_ft_config(
Path(dir_path) / 'config.ini')
np_dtype = np.float16 if fp16 else np.float32
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
def set_smoother(module, dir_path, base_name, shape, rank):
suffix = f"{rank}.bin"
t = fromfile(dir_path, f"{base_name}.smoother.{suffix}", shape,
np.float32)
module.smoother.value = t
# Determine the quantization mode.
quant_mode = getattr(tensorrt_llm_llama, "quant_mode", QuantMode(0))
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
def sq_trick(x):
return x.view(np.float32) if use_smooth_quant else x
# Debug
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
tensorrt_llm_llama.vocab_embedding.weight.value = (fromfile(
dir_path, 'vocab_embedding.weight.bin', [vocab_size, n_embd]))
tensorrt_llm_llama.ln_f.weight.value = (fromfile(dir_path,
'ln_f.weight.bin'))
# share input embedding
lm_head_weight = fromfile(dir_path, 'lm_head.weight.bin',
[vocab_size, n_embd])
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = tensorrt_llm_llama.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
for i in range(n_layer):
c_attn_out_dim = (3 * n_embd //
tensor_parallel) if not multi_query_mode else (
n_embd // tensor_parallel +
(n_embd // n_head) * 2)
tensorrt_llm_llama.layers[i].input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[n_embd, c_attn_out_dim], w_type)
if t is not None:
dst = tensorrt_llm_llama.layers[i].attention.qkv.weight
if use_smooth_quant:
dst.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[i].attention.qkv,
tensorrt_llm_llama.layers[i].input_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, c_attn_out_dim],
quant_per_token_dyn,
quant_per_channel,
rank=rank,
is_qkv=True)
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_llama.layers[i].attention.dense.weight
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
dst.value = sq_trick(np.ascontiguousarray(np.transpose(t, [1, 0])))
dense_scale = getattr(tensorrt_llm_llama.layers[i].attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[i].attention.dense, dense_scale,
dir_path, 'model.layers.' + str(i) + '.attention.dense.',
[1, n_embd], quant_per_token_dyn, quant_per_channel)
set_smoother(tensorrt_llm_llama.layers[i].attention.dense, dir_path,
'model.layers.' + str(i) + '.attention.dense',
[1, n_embd // tensor_parallel], rank)
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
dst = tensorrt_llm_llama.layers[i].post_layernorm.weight
dst.value = fromfile(
dir_path, 'model.layers.' + str(i) + '.post_layernorm.weight.bin')
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.fc.weight.' + suffix,
[n_embd, inter_size // tensor_parallel], w_type)
if use_smooth_quant:
tensorrt_llm_llama.layers[i].mlp.fc.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[i].mlp.fc,
tensorrt_llm_llama.layers[i].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.fc.',
[1, inter_size // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank)
else:
tensorrt_llm_llama.layers[
i].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.gate.weight.' + suffix,
[n_embd, inter_size // tensor_parallel], w_type)
if use_smooth_quant:
tensorrt_llm_llama.layers[i].mlp.gate.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[i].mlp.gate,
tensorrt_llm_llama.layers[i].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.gate.',
[1, inter_size // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank)
else:
tensorrt_llm_llama.layers[
i].mlp.gate.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
t = fromfile(dir_path,
'model.layers.' + str(i) + '.mlp.proj.weight.' + suffix,
[inter_size // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
tensorrt_llm_llama.layers[i].mlp.proj.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
proj_scale = getattr(tensorrt_llm_llama.layers[i].mlp,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_llama.layers[i].mlp.proj, proj_scale, dir_path,
'model.layers.' + str(i) + '.mlp.proj.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
set_smoother(tensorrt_llm_llama.layers[i].mlp.proj, dir_path,
'model.layers.' + str(i) + '.mlp.proj',
[1, inter_size // tensor_parallel], rank)
else:
tensorrt_llm_llama.layers[i].mlp.proj.weight.value = (
np.ascontiguousarray(np.transpose(t, [1, 0])))
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
tensorrt_llm_llama.layers[
i].attention.kv_orig_quant_scale.value = 1.0 / t
tensorrt_llm_llama.layers[i].attention.kv_quant_orig_scale.value = t
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def load_from_groupwise_safetensors_llama(tensorrt_llm_llama,
quant_safetensors_path,
rank=0,
tensor_parallel=1,
dtype="float32",
multi_query_mode=False):
tensorrt_llm.logger.info(
'Loading weights from groupwise LLaMA safetensors...')
tik = time.time()
assert multi_query_mode == False, 'Multy_query_mode is not supported!'
groupwise_qweight_safetensors = safe_open(quant_safetensors_path,
framework="pt",
device=0)
model_params = {
key: groupwise_qweight_safetensors.get_tensor(key)
for key in groupwise_qweight_safetensors.keys()
}
def unpack_int32_into_int8(w_packed):
# Unpack inputs packed in int32/float32 into uint4 and store them in int8 format
w_packed_int4x2 = w_packed.contiguous().view(torch.uint8)
w_unpacked = torch.zeros(w_packed_int4x2.shape[0],
w_packed_int4x2.shape[1] * 2,
dtype=torch.int8)
w_unpacked[:, ::2] = w_packed_int4x2 % 16
w_unpacked[:, 1::2] = w_packed_int4x2 // 16
return w_unpacked.contiguous()
def preprocess_groupwise_weight_params(weight_name,
qweight_int32=None,
qzeros_int32=None,
scales_fp16=None):
if weight_name is not None:
qweight_int32 = model_params[weight_name].cpu()
qzeros_int32 = model_params[weight_name[:-7] + 'qzeros'].cpu()
scales_fp16 = model_params[weight_name[:-7] + 'scales'].cpu()
UINT4_TO_INT4_FLAG = 1
GPTQ_FLAG = 1
packer = torch.ops.fastertransformer.pack_int8_tensor_to_packed_int4
preprocessor = torch.ops.fastertransformer.preprocess_weights_for_mixed_gemm
qweight_unpacked_int8 = unpack_int32_into_int8(
qweight_int32.T).T.contiguous() - 8
qweight_interleaved = preprocessor(packer(qweight_unpacked_int8),
torch.quint4x2).view(torch.float32)
# zeros = zeros * scales
qzeros_unpacked_int32 = unpack_int32_into_int8(qzeros_int32)
zeros_x_scales_fp16 = (-qzeros_unpacked_int32 + 8 * UINT4_TO_INT4_FLAG -
GPTQ_FLAG) * scales_fp16
zeros_x_scales_fp16 = zeros_x_scales_fp16.half()
# return processed interleaved weight, original scales and zeros * scales
return qweight_interleaved.contiguous(), scales_fp16.contiguous(
), zeros_x_scales_fp16.contiguous()
layer_ids = [
extract_layer_idx(key) for key in groupwise_qweight_safetensors.keys()
]
layer_ids = [
int(layer_idx) for layer_idx in layer_ids if layer_idx is not None
]
num_hidden_layers = max(layer_ids) + 1
num_kv_heads = tensorrt_llm_llama.num_kv_heads
mha_mode = (num_kv_heads == tensorrt_llm_llama.num_heads)
suffixs = ['qweight', 'qzeros', 'scales']
for l in range(num_hidden_layers):
prefix = f'model.layers.{l}.self_attn.'
split_qkv_suf = []
for suf in suffixs:
q_part = model_params[prefix + 'q_proj.' + suf].cpu()
k_part = model_params[prefix + 'k_proj.' + suf].cpu()
v_part = model_params[prefix + 'v_proj.' + suf].cpu()
qkv_part = torch.cat([q_part, k_part, v_part], dim=0)
dim = qkv_part.shape
qkv_part = qkv_part.reshape(3, dim[0] // 3, dim[1])
split_qkv = qkv_part.split(dim[1] // tensor_parallel, dim=2)[rank]
split_qkv = torch.cat([
split_qkv[0, :, :].squeeze(0), split_qkv[1, :, :].squeeze(0),
split_qkv[2, :, :].squeeze(0)
],
dim=1)
split_qkv_suf.append(split_qkv)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_qkv_suf[0], split_qkv_suf[1], split_qkv_suf[2])
tensorrt_llm_llama.layers[
l].attention.qkv.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[l].attention.qkv.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[l].attention.qkv.zero.value = th_scale.numpy()
torch_dtype = str_dtype_to_torch(dtype)
for k, v in model_params.items():
if isinstance(v, list):
v = [torch_to_numpy(vv.to(torch_dtype).detach().cpu()) for vv in v]
else:
v = torch_to_numpy(v.to(torch_dtype).detach().cpu())
if 'model.embed_tokens.weight' in k:
tensorrt_llm_llama.vocab_embedding.weight.value = v
elif 'model.norm.weight' in k:
tensorrt_llm_llama.ln_f.weight.value = v
elif 'lm_head.weight' in k:
tensorrt_llm_llama.lm_head.weight.value = np.ascontiguousarray(
split(v, tensor_parallel, rank))
else:
layer_idx = extract_layer_idx(k)
if layer_idx is None:
continue
idx = int(layer_idx)
if idx >= tensorrt_llm_llama.num_layers:
continue
if 'input_layernorm.weight' in k:
tensorrt_llm_llama.layers[idx].input_layernorm.weight.value = v
elif 'post_attention_layernorm.weight' in k:
tensorrt_llm_llama.layers[idx].post_layernorm.weight.value = v
elif 'self_attn.o_proj.qweight' in k:
split_v_suf = []
for suf in suffixs:
v = model_params[k[:-7] + suf].cpu()
split_v = v.split(v.shape[0] // tensor_parallel,
dim=0)[rank]
split_v_suf.append(split_v)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
tensorrt_llm_llama.layers[
idx].attention.dense.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[
idx].attention.dense.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[
idx].attention.dense.zero.value = th_scale.numpy()
elif 'mlp.up_proj.qweight' in k:
split_v_suf = []
for suf in suffixs:
v = model_params[k[:-7] + suf].cpu()
split_v = v.split(v.shape[1] // tensor_parallel,
dim=1)[rank]
split_v_suf.append(split_v)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
tensorrt_llm_llama.layers[
idx].mlp.gate.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[
idx].mlp.gate.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[
idx].mlp.gate.zero.value = th_scale.numpy()
elif 'mlp.down_proj.qweight' in k:
split_v_suf = []
for suf in suffixs:
v = model_params[k[:-7] + suf].cpu()
split_v = v.split(v.shape[0] // tensor_parallel,
dim=0)[rank]
split_v_suf.append(split_v)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
tensorrt_llm_llama.layers[
idx].mlp.proj.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[
idx].mlp.proj.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[
idx].mlp.proj.zero.value = th_scale.numpy()
elif 'mlp.gate_proj.qweight' in k:
split_v_suf = []
for suf in suffixs:
v = model_params[k[:-7] + suf].cpu()
split_v = v.split(v.shape[1] // tensor_parallel,
dim=1)[rank]
split_v_suf.append(split_v)
th_qweight, th_zero, th_scale = preprocess_groupwise_weight_params(
None, split_v_suf[0], split_v_suf[1], split_v_suf[2])
tensorrt_llm_llama.layers[
idx].mlp.fc.qweight.value = th_qweight.numpy()
tensorrt_llm_llama.layers[
idx].mlp.fc.scale.value = th_zero.numpy()
tensorrt_llm_llama.layers[
idx].mlp.fc.zero.value = th_scale.numpy()
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
return