TensorRT-LLMs/examples/mpt/run.py
2023-09-20 00:29:41 -07:00

241 lines
9.6 KiB
Python

import argparse
import csv
import json
from pathlib import Path
import numpy as np
import torch
from transformers import AutoTokenizer, T5Tokenizer
import tensorrt_llm
from tensorrt_llm.runtime import ModelConfig, SamplingConfig
from build import get_engine_name # isort:skip
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument('--log_level', type=str, default='error')
parser.add_argument('--engine_dir', type=str, default='gpt_outputs')
parser.add_argument('--input_text',
type=str,
default='Born in north-east France, Soyer trained as a')
parser.add_argument(
'--input_tokens',
dest='input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument('--tokenizer',
dest='tokenizer_path',
help="HF tokenizer config path",
default='EleutherAI/gpt-neox-20b')
parser.add_argument('--vocab_file',
help="Used for sentencepiece tokenizers")
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument(
'--prompt_table',
type=Path,
help="Path to .npy file, exported by nemo_prompt_convert.py")
parser.add_argument(
'--tasks',
help="Comma-separated list of tasks for prompt tuning: ex 0,3,1,0")
return parser.parse_args()
def generate(
max_output_len: int,
log_level: str = 'error',
engine_dir: str = 'gpt_outputs',
input_text: str = 'Born in north-east France, Soyer trained as a',
input_file: str = None,
output_csv: str = None,
output_npy: str = None,
tokenizer_path: str = 'gpt2',
vocab_file=None,
num_beams: int = 1,
prompt_table: Path = None,
tasks: str = None,
):
tensorrt_llm.logger.set_level(log_level)
engine_dir = Path(engine_dir)
config_path = engine_dir / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
use_gpt_attention_plugin = config['plugin_config']['gpt_attention_plugin']
remove_input_padding = config['plugin_config']['remove_input_padding']
dtype = config['builder_config']['precision']
world_size = config['builder_config']['tensor_parallel']
assert world_size == tensorrt_llm.mpi_world_size(), \
f'Engine world size ({world_size}) != Runtime world size ({tensorrt_llm.mpi_world_size()})'
num_heads = config['builder_config']['num_heads'] // world_size
hidden_size = config['builder_config']['hidden_size'] // world_size
vocab_size = config['builder_config']['vocab_size']
num_layers = config['builder_config']['num_layers']
multi_query_mode = config['builder_config']['multi_query_mode']
paged_kv_cache = config['builder_config']['paged_kv_cache']
tokens_per_block = config['builder_config']['tokens_per_block']
use_prompt_tuning = config['builder_config']['use_prompt_tuning']
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size,
runtime_rank,
tp_size=world_size)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
if vocab_file is not None:
tokenizer = T5Tokenizer(vocab_file=vocab_file)
END_ID = 50256
else:
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
END_ID = tokenizer.eos_token_id
model_config = ModelConfig(
num_heads=num_heads,
num_kv_heads=(1 if multi_query_mode else num_heads),
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
gpt_attention_plugin=use_gpt_attention_plugin,
remove_input_padding=remove_input_padding,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
use_prompt_tuning=use_prompt_tuning)
sampling_config = SamplingConfig(end_id=END_ID,
pad_id=END_ID,
num_beams=num_beams,
temperature=1.0,
top_k=1,
top_p=1.0)
engine_name = get_engine_name('mpt', dtype, world_size, runtime_rank)
serialize_path = engine_dir / engine_name
with open(serialize_path, 'rb') as f:
engine_buffer = f.read()
decoder = tensorrt_llm.runtime.GenerationSession(model_config,
engine_buffer,
runtime_mapping)
input_tokens = []
if input_file is None:
input_tokens.append(
tokenizer.encode(input_text, add_special_tokens=False))
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_tokens.append(np.array(line, dtype='int32'))
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
row = row[row != END_ID]
input_tokens.append(row)
else:
print('Input file format not supported.')
raise SystemExit
input_ids = None
input_lengths = None
if input_file is None:
input_ids = torch.cuda.IntTensor(input_tokens)
input_lengths = torch.cuda.IntTensor([input_ids.size(1)])
else:
input_lengths = torch.cuda.IntTensor([len(x) for x in input_tokens])
if remove_input_padding:
input_ids = np.concatenate(input_tokens)
input_ids = torch.cuda.IntTensor(input_ids).unsqueeze(0)
else:
input_ids = torch.nested.to_padded_tensor(
torch.nested.nested_tensor(input_tokens, dtype=torch.int32),
END_ID).cuda()
max_input_length = torch.max(input_lengths).item()
decoder.setup(input_lengths.size(0), max_input_length, max_output_len)
ptuning_args = []
if use_prompt_tuning:
if prompt_table is not None:
prompt_table = torch.from_numpy(np.load(prompt_table))
task_vocab_size = torch.tensor([prompt_table.shape[1]],
dtype=torch.int32,
device="cuda")
prompt_table = prompt_table.view(
(prompt_table.shape[0] * prompt_table.shape[1],
prompt_table.shape[2]))
prompt_table = prompt_table.cuda().to(
dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
else:
prompt_table = torch.empty([1, hidden_size]).cuda()
task_vocab_size = torch.zeros([1]).cuda()
if tasks is not None:
tasks = torch.tensor([int(t) for t in tasks.split(',')],
dtype=torch.int32,
device="cuda")
assert tasks.shape[0] == input_ids.shape[
0], "Number of supplied tasks must match input batch size"
else:
tasks = torch.zeros([input_ids.size(0)]).cuda()
ptuning_args = [prompt_table, tasks, task_vocab_size]
output_ids = decoder.decode(input_ids, input_lengths, sampling_config,
*ptuning_args)
torch.cuda.synchronize()
if runtime_rank == 0:
if output_csv is None and output_npy is None:
for b in range(input_lengths.size(0)):
inputs = input_tokens[b]
input_text = tokenizer.decode(inputs)
print(f'Input: {input_text}')
if num_beams <= 1:
output_begin = max_input_length
outputs = output_ids[b][0][output_begin:].tolist()
output_text = tokenizer.decode(output_ids[b][0]) #outputs)
print(f'Output: {output_text}')
else:
for beam in range(num_beams):
output_begin = input_lengths[b]
output_end = input_lengths[b] + max_output_len
outputs = output_ids[b][beam][
output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(f'Output: {output_text}')
output_ids = output_ids.reshape((-1, output_ids.size(2)))
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids.tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
np.save(output_file, outputs)
if __name__ == '__main__':
args = parse_arguments()
generate(**vars(args))