TensorRT-LLMs/cpp/tensorrt_llm/kernels/samplingAirTopPKernels.h
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

102 lines
5.7 KiB
C++

/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include <curand_kernel.h>
namespace tensorrt_llm
{
namespace kernels
{
//! \brief Given logProbs, performs top P sampling.
//! Note different from invokeTopPSampling() and invokeBatchTopPSampling() there two functions invokeAirTopPSampling
//! and invokeBatchAirTopPSampling is non-deterministic.
//! Fills sampled tokens to outputIds. Computes sequenceLength, finished state, cumLogProbs inplace.
//! Sampling per request can be controlled using skipDecode and topPs parameters.
//! Function sets workspaceSize and exits early if workspace is nullptr.
//!
//! \param workspace pointer to the workspace. Has to be pre-allocated by caller. Function does not take ownership of
//! the buffer.
//! \param outputIds output buffer [batchSize][maxSeqLen]. Contains pointers to rows with output tokens per request.
//! \param sequenceLength input/output buffer [batchSize]. Current sequence length of the request up to, but excluding
//! endId token.
//! \param finishedInput input buffer[batchSize].Exit early if true.
//! \param finishedOutput output buffer [batchSize]. Set flag if sequence has finished (if finished || outputId ==
//! endId).
//! \param cumLogProbs input/output buffer [batchSize]. Cumulative log probability of selected tokens. Ignored
//! if nullptr.
//! \param outputLogProbs output buffer [batchSize]. Log probs is the probability induced by the top-k
//! sampling. We normalize the probability 'expLogit' of the selected token by the probability 's_sum' of a set of top-k
//! tokens, meaning the logProb is the probability of the selected token, conditioned on the event that it is selected,
//! i.e., log_prob = log P(i | i is in top-k) = log(expLogit / s_sum). Ignored if nullptr.
//! \param logProbs input buffer [batchSize x vocabSizePadded]. Log probabilities of each token in the vocab.
//! If cumLogProbs or outputLogProbs are specified, logProbs must contain **just** probabilities instead of log
//! probabilities.
//! \param curandstate input buffer [batchSize]. Curand states properly initialized using invokeCurandInitialize per
//! request.
//! \param batchSize batch size
//! \param maxBatchSize max batch size
//! \param vocabSizePadded size of padded vocab
//! \param endIds input buffer [batchSize]. EOS token ids per request
//! \param maxTopP maximum among all topPs P for topP sampling
//! \param topPs input buffer [batchSize]. P for topP sampling per request. Supported P is in range (0.0; 1.0].
//! If nullptr maxTopP is used for all requests.
//! \param stream cuda stream
//! \param blockNum The appropriate block configuration calculated based on the number of multiprocessors, occupancy,
//! batchSize and vocabSizePadded
//! \param skipDecode input buffer [batchSize]. Flags whether to skip decoding per request
//! \param batchSlots input buffer[batchSize], optional. Indices of rows of data in memory pool
//! \param isDeterministic bool, optional. Default value is false.
//! When isDeterministic==true, the result is reproducible.
template <typename T>
void invokeBatchAirTopPSampling(void* workspace, int** outputIds, int* sequenceLength,
FinishedState const* finishedInput, FinishedState* finishedOutput, float* cumLogProbs, float* outputLogProbs,
T const* logProbs, curandState_t* curandstate, int const batchSize, int maxBatchSize, size_t const vocabSizePadded,
int const* endIds, float const maxTopP, float const* topPs, cudaStream_t stream, int blockNum,
bool const* skipDecode, int32_t const* batchSlots, bool isDeterministic = false);
//! \brief Specialization of invokeBatchAirTopPSampling with topPs=nullptr
template <typename T>
void invokeAirTopPSampling(void* workspace, int** outputIds, int* sequenceLength, FinishedState const* finishedInput,
FinishedState* finishedOutput, float* cumLogProbs, float* outputLogProbs, T const* logProbs,
curandState_t* curandstate, int const batchSize, int maxBatchSize, size_t const vocabSizePadded, int const* endIds,
float const topP, cudaStream_t stream, int blockNum, bool const* skipDecode, int32_t const* batchSlots,
bool isDeterministic = false);
//! \brief Calculate the number of blocks based on the number of multiprocessors, batchSize and vocabSize.
//! \tparam T the data type of value
//! \param batchSize
//! \param len the number of candidates for each case
//! \param smCnt number of multiprocessors on device
//! \param isDeterministic bool, optional. Default value is false.
//! When isDeterministic==true, the result is reproducible.
template <typename T>
uint32_t calcAirTopPBlockNum(int batchSize, int len, int smCnt, bool isDeterministic = false);
//! \brief Returns workspace size in bytes needed for sampling Air TopP computation
//! \param batchSize batch size
//! \param vocabSizePadded size of padded vocab
//! \param isDeterministic bool, optional. Default value is false.
//! When isDeterministic==true, the result is reproducible.
template <typename T>
[[nodiscard]] size_t getAirTopPWorkspaceSize(int32_t batchSize, int32_t vocabSizePadded, bool isDeterministic = false);
} // namespace kernels
} // namespace tensorrt_llm