TensorRT-LLMs/cpp/tensorrt_llm/layers/baseSamplingLayer.h
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

134 lines
5.0 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <curand_kernel.h>
#include "tensorrt_llm/common/tensor.h"
#include "tensorrt_llm/kernels/penaltyTypes.h"
#include "tensorrt_llm/layers/baseLayer.h"
#include "tensorrt_llm/layers/decodingParams.h"
#include "tensorrt_llm/runtime/common.h"
namespace tc = tensorrt_llm::common;
namespace tensorrt_llm
{
namespace layers
{
//! \brief Base class for sampling layers.
//! Layer modifies logits in-place.
template <typename T>
class BaseSamplingLayer : public BaseLayer
{
public:
class SetupParams : public DecodingSetupParams
{
public:
std::optional<std::vector<runtime::SizeType>> runtime_top_k; // [1] or [batchSize] on cpu
std::optional<std::vector<float>> runtime_top_p; // [1] or [batchSize] on cpu
std::optional<std::vector<uint64_t>> randomSeed; // [1] or [batchSize] on cpu
std::optional<std::vector<float>> top_p_decay; // [batchSize], must between [0, 1]
std::optional<std::vector<float>> top_p_min; // [batchSize], must between [0, 1]
std::optional<std::vector<runtime::TokenIdType>> top_p_reset_ids; // [batchSize]
std::optional<bool> normalize_log_probs;
};
class ForwardParams : public DecodingParams
{
public:
ForwardParams(int step, int ite, tc::Tensor logits, tc::Tensor end_ids, int max_seq_len)
: DecodingParams{step, ite, std::move(logits), std::move(end_ids)}
, max_seq_len{max_seq_len}
{
}
// mandatory parameters
int max_seq_len;
// optional parameters
std::optional<tc::Tensor> input_lengths; // [localBatchSize]
curandState_t* curand_states; // [localBatchSize]
// Pointer to the workspace for sampling computation
void* sampling_workspace;
// Flag to mark that logits tensor contains probabilities
bool probs_computed;
};
// clang-format off
//! \brief Constructor.
//!
//! \param maxBatchSize Maximum batch size configured in the system
//! \param vocabSize Unpadded size of the vocabulary
//! \param vocabSizePadded Padded size of the vocabulary
//! \param stream cuda stream
//! \param allocator shared pointer to IAllocator object that will be use to alloc and free tensors
//! \param prop [optional] cudaDeviceProp
// clang-format on
BaseSamplingLayer(runtime::SizeType maxBatchSize, runtime::SizeType vocabSize, runtime::SizeType vocabSizePadded,
cudaStream_t stream, std::shared_ptr<tensorrt_llm::common::IAllocator> allocator, cudaDeviceProp* prop);
~BaseSamplingLayer() override = default;
// clang-format off
//! \brief Executes sampling layer.
//! Applies temperature, repetition/presence penalties and minLength penalty.
//! Then calls runSampling.
//! It exits early if mSkipDecodeHost is set to skip this layer for all requests in the batch
//!
//! \param outputs DecodingOutputParams struct with output tensors
//! \param inputs ForwardParams struct with input tensors and params
//! \param curandStatesDevice Properly initialized curand states buffer on device
// clang-format on
virtual void forward(DecodingOutputParams& outputs, ForwardParams& inputs) = 0;
// clang-format off
//! \brief Virtual function that setups internal tensors of the layer with sampling params
//! specified in setupParams for the entries specified by batchSlots.
//! It updates data for new requests in internal tensors inplace.
//! Thus, it must be called only once for new requests.
//!
//! \param batchSize Maximum batch size configured in the system
//! \param batchSlots input tensor [batchSize], address map of the new requests, in pinned memory
//! \param setupParams setup sampling parameters per request
// clang-format on
virtual void setup(runtime::SizeType batchSize, int32_t const* batchSlots, SetupParams const& setupParams) = 0;
size_t getWorkspaceSize() const
{
return mSamplingWorkspaceSize;
}
size_t getAllocatedSize() const
{
return mAllocatedSize;
}
protected:
runtime::SizeType mMaxBatchSize;
runtime::SizeType mVocabSize;
runtime::SizeType mVocabSizePadded;
size_t mSamplingWorkspaceSize = 0;
size_t mAllocatedSize = 0;
};
} // namespace layers
} // namespace tensorrt_llm