TensorRT-LLMs/cpp/tensorrt_llm/layers/medusaDecodingLayer.cpp
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

482 lines
22 KiB
C++

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/layers/medusaDecodingLayer.h"
#include "tensorrt_llm/common/cudaUtils.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/decodingKernels.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/runtime/bufferManager.h"
#include "tensorrt_llm/runtime/iBuffer.h"
#include <algorithm>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
template <typename T>
MedusaDecodingLayer<T>::MedusaDecodingLayer(SizeType maxBatchSize, SizeType vocabSize, SizeType vocabSizePadded,
SizeType maxTokensPerStep, SizeType maxNumHeads, cudaStream_t stream, std::shared_ptr<IAllocator> allocator)
: BaseLayer(stream, std::move(allocator), nullptr)
, mMaxBatchSize(maxBatchSize)
, mVocabSize(vocabSize)
, mVocabSizePadded(vocabSizePadded)
, mMaxTokensPerStep(maxTokensPerStep)
, mMaxNumHeads(maxNumHeads)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
allocateBuffer();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
MedusaDecodingLayer<T>::~MedusaDecodingLayer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
freeBuffer();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::allocateBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
// Get sampling workspace size
{
auto samplingSizePrimarySampling
= getTopKWorkspaceSize<T>(mMaxBatchSize, mMaxTokensPerStep, TOP_K_MAX, mVocabSizePadded);
auto const maxBatchSizeHeadNums = mMaxBatchSize * mMaxNumHeads;
auto samplingSizeMedusaHeadsSampling
= getTopKWorkspaceSize<T>(maxBatchSizeHeadNums, 1, TOP_K_MAX, mVocabSizePadded);
mSamplingWorkspaceSize = std::max(samplingSizePrimarySampling, samplingSizeMedusaHeadsSampling);
}
mDraftIdsPtrHost
= runtime::BufferManager::pinned(ITensor::makeShape({static_cast<SizeType>(mMaxBatchSize), mMaxNumHeads}),
runtime::TRTDataType<TokenIdType*>::value);
mCummulativeTopK.resize(mMaxBatchSize * mMaxNumHeads);
std::array<size_t, 11> deviceBufferSizes;
deviceBufferSizes[0] = mMaxBatchSize * sizeof(curandState_t);
deviceBufferSizes[1] = mMaxBatchSize * mMaxNumHeads * sizeof(SizeType);
deviceBufferSizes[2] = mSamplingWorkspaceSize;
deviceBufferSizes[3] = mMaxBatchSize * sizeof(SizeType);
deviceBufferSizes[4] = mMaxBatchSize * mMaxTokensPerStep * sizeof(TokenIdType);
deviceBufferSizes[5] = mMaxBatchSize * mMaxNumHeads * sizeof(uint64_t);
deviceBufferSizes[6] = mMaxBatchSize * mMaxNumHeads * sizeof(T*);
deviceBufferSizes[7] = mMaxBatchSize * mMaxNumHeads * sizeof(curandState_t);
deviceBufferSizes[8] = mMaxBatchSize * mMaxNumHeads * sizeof(SizeType);
deviceBufferSizes[9] = mMaxBatchSize * mMaxTokensPerStep * sizeof(TokenIdType);
deviceBufferSizes[10] = mMaxBatchSize * sizeof(SizeType);
mCurandStatesDevice = mAllocator->reMalloc(mCurandStatesDevice, deviceBufferSizes[0], false);
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[1], false);
mSamplingWorkspaceDevice = mAllocator->reMalloc(mSamplingWorkspaceDevice, deviceBufferSizes[2], false);
mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[3], false);
mTargetTokensDevice = mAllocator->reMalloc(mTargetTokensDevice, deviceBufferSizes[4], false);
mRandomSeedsDevice = mAllocator->reMalloc(mRandomSeedsDevice, deviceBufferSizes[5], false);
mMedusaSelectedLogitsPtrsDevice
= mAllocator->reMalloc(mMedusaSelectedLogitsPtrsDevice, deviceBufferSizes[6], false);
mCurandStatesMedusaLogitsDevice
= mAllocator->reMalloc(mCurandStatesMedusaLogitsDevice, deviceBufferSizes[7], false);
mRuntimeTopKPerRequestPerMedusaHeadDevice
= mAllocator->reMalloc(mRuntimeTopKPerRequestPerMedusaHeadDevice, deviceBufferSizes[8], false);
mNewDraftTokensDevice = mAllocator->reMalloc(mNewDraftTokensDevice, deviceBufferSizes[9], false);
mBestPathIdsDevice = mAllocator->reMalloc(mBestPathIdsDevice, deviceBufferSizes[10], false);
mTiledBatchSlotsSetup = BufferManager::pinnedPool(
ITensor::makeShape({static_cast<SizeType>(mMaxBatchSize * mMaxNumHeads)}), nvinfer1::DataType::kINT32);
mTiledBatchSlotsForward = BufferManager::pinnedPool(
ITensor::makeShape({static_cast<SizeType>(mMaxBatchSize * mMaxNumHeads)}), nvinfer1::DataType::kINT32);
mMedusaInputLogitsPtrs = BufferManager::pinnedPool(
ITensor::makeShape({static_cast<SizeType>(mMaxBatchSize * mMaxNumHeads)}), TRTDataType<T*>::value);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mAllocator->free((void**) (&mCurandStatesDevice));
mAllocator->free((void**) (&mSetupWorkspaceDevice));
mAllocator->free((void**) (&mSamplingWorkspaceDevice));
mAllocator->free((void**) (&mRuntimeTopKDevice));
mAllocator->free((void**) (&mTargetTokensDevice));
mAllocator->free((void**) (&mRandomSeedsDevice));
mAllocator->free((void**) (&mMedusaSelectedLogitsPtrsDevice));
mAllocator->free((void**) (&mCurandStatesMedusaLogitsDevice));
mAllocator->free((void**) (&mRuntimeTopKPerRequestPerMedusaHeadDevice));
mAllocator->free((void**) (&mNewDraftTokensDevice));
mAllocator->free((void**) (&mBestPathIdsDevice));
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::setup(SizeType batchSize, SizeType const* batchSlots, MedusaSetupParams const& setupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
// Prepare random seed
auto initCurandStates = [this](std::optional<std::vector<uint64_t>> const& randomSeed, SizeType batchSize,
SizeType const* batchSlots, curandState_t* statesDevice)
{
if (randomSeed)
{
if (randomSeed->size() == 1)
{
invokeCurandInitialize(statesDevice, batchSlots, batchSize, randomSeed->front(), this->mStream);
sync_check_cuda_error();
}
else
{
TLLM_CHECK_WITH_INFO(randomSeed->size() == batchSize, "Random seed vector size mismatch.");
cudaAutoCpy(this->mRandomSeedsDevice, randomSeed->data(), batchSize, this->mStream);
invokeCurandBatchInitialize(
statesDevice, batchSlots, batchSize, this->mRandomSeedsDevice, this->mStream);
sync_check_cuda_error();
}
}
else
{
// Initialize curand states using the default seed 0.
invokeCurandInitialize(statesDevice, batchSlots, batchSize, 0, this->mStream);
}
};
initCurandStates(setupParams.randomSeed, batchSize, batchSlots, mCurandStatesDevice);
auto batchSizeMaxNumHeads = batchSize * mMaxNumHeads;
auto randomSeed = setupParams.randomSeed.value_or(std::vector<uint64_t>(batchSize, uint64_t{0}));
std::vector<uint64_t> tiledRandomSeed(batchSizeMaxNumHeads);
if (randomSeed.size() > 1)
{
for (SizeType bi = 0; bi < batchSize; ++bi)
{
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
tiledRandomSeed[bi * mMaxNumHeads + hi] = randomSeed[bi];
}
}
}
auto tiledBatchSlots = bufferCast<SizeType>(*mTiledBatchSlotsSetup);
for (SizeType bi = 0; bi < batchSize; ++bi)
{
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
tiledBatchSlots[bi * mMaxNumHeads + hi] = batchSlots[bi] + hi;
}
}
initCurandStates({tiledRandomSeed}, batchSizeMaxNumHeads, tiledBatchSlots, mCurandStatesMedusaLogitsDevice);
// Prepare runtime top K
auto prepareRuntimeTopK = [this](std::vector<SizeType> const& runtimeTopK, SizeType batchSize,
SizeType const* batchSlots, SizeType* runtimeTopKDevice)
{
TLLM_CHECK_WITH_INFO(runtimeTopK.size() == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
cudaAutoCpy(
reinterpret_cast<SizeType*>(this->mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, this->mStream);
invokeScatterDecodingParams(reinterpret_cast<SizeType*>(this->mSetupWorkspaceDevice), runtimeTopKDevice,
batchSlots, batchSize, this->mStream);
// FIXME(nkorobov): monotonically growing
auto const curMaxTopK = *std::max_element(std::begin(runtimeTopK), std::end(runtimeTopK));
return curMaxTopK;
};
auto constexpr defaultTopK = 1u;
{
auto runtimeTopK = setupParams.runtimeTopK.value_or(std::vector<SizeType>(batchSize, defaultTopK));
auto const curMaxTopK = prepareRuntimeTopK(runtimeTopK, batchSize, batchSlots, mRuntimeTopKDevice);
mRuntimeMaxTopK = std::max(mRuntimeMaxTopK, curMaxTopK);
}
{
auto runtimeHeadsTopK = setupParams.runtimeHeadsTopK;
std::vector<SizeType> runtimeHeadsTopKFlatten;
if (runtimeHeadsTopK.has_value())
{
for (auto const& sub : runtimeHeadsTopK.value())
{
runtimeHeadsTopKFlatten.insert(runtimeHeadsTopKFlatten.end(), sub.begin(), sub.end());
}
}
else
{
runtimeHeadsTopKFlatten = std::vector<SizeType>(batchSizeMaxNumHeads, defaultTopK);
}
for (SizeType bi = 0; bi < batchSize; ++bi)
{
auto const slot = batchSlots[bi];
SizeType cummulativeTopK = 0;
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
mCummulativeTopK[slot * mMaxNumHeads + hi] = cummulativeTopK;
cummulativeTopK += runtimeHeadsTopKFlatten[bi * mMaxNumHeads + hi];
}
}
auto tiledBatchSlots = bufferCast<SizeType>(*mTiledBatchSlotsSetup);
for (SizeType bi = 0; bi < batchSize; ++bi)
{
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
tiledBatchSlots[bi * mMaxNumHeads + hi] = mMaxNumHeads * batchSlots[bi] + hi;
}
}
auto const curMaxTopK = prepareRuntimeTopK(runtimeHeadsTopKFlatten, static_cast<SizeType>(batchSizeMaxNumHeads),
tiledBatchSlots, mRuntimeTopKPerRequestPerMedusaHeadDevice);
mRuntimeMaxTopKPerRequestPerMedusaHead = std::max(mRuntimeMaxTopKPerRequestPerMedusaHead, curMaxTopK);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::forward(DecodingOutputParams& outputs, MedusaForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
samplePrimeHeadTokens(outputs, inputs);
acceptDraftTokens(outputs, inputs);
sampleNewDraftTokens(outputs, inputs);
scatterNewDraftTokens(outputs, inputs);
packAcceptedPaths(outputs, inputs);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::samplePrimeHeadTokens(DecodingOutputParams& outputs, MedusaForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
auto logits = inputs.logits.template getPtr<T>();
auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<SizeType const>() : nullptr;
auto sequenceLengths = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<SizeType>() : nullptr;
auto tokensPerStepDevice = inputs.medusaCurTokensPerStep.template getPtr<SizeType>();
TLLM_CHECK_WITH_INFO(batchSlots != nullptr, "Batch slots must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(sequenceLengths != nullptr, "Sequence lengths must be provided for MedusaDecoding");
// Sample multiple tokens per request and store them to separate to be accepted/rejected later
// Sequence length is not modified, endIds is not checked, outputLogProbs are not supported.
// Finished state is not set.
invokeBatchTopKSampling(mSamplingWorkspaceDevice, logits, /* logProbsPtrs */ static_cast<T const* const*>(nullptr),
/* outputIdsPtrs */ nullptr, mTargetTokensDevice, /* sequenceLengths */ nullptr,
/* finishedInput */ nullptr, /* finishedOutput */ nullptr,
/* cumLogProbs */ nullptr, /* outputLogProbs */ nullptr, mCurandStatesDevice, mRuntimeMaxTopK,
mRuntimeTopKDevice, 1.0f, /* runtimeTopPDevice */ nullptr, mVocabSizePadded, /* endIds */ nullptr, batchSlots,
mStream, batchSize, mMaxBatchSize, tokensPerStepDevice, mMaxTokensPerStep, mMaxTokensPerStep,
/* skipDecode */ nullptr, /* normalizeLogProbs */ false,
/* probsComputed */ false, /* return all Top-K*/ false);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::acceptDraftTokens(DecodingOutputParams& outputs, MedusaForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
auto const maxSeqLen = outputs.output_ids.shape[outputs.output_ids.shape.size() - 1];
auto outputIds = outputs.output_ids.template getPtr<TokenIdType>();
auto endIds = inputs.end_ids.template getPtr<TokenIdType const>();
auto paths = inputs.paths.template getPtr<SizeType const>();
auto batchSlots
= inputs.batch_slots ? inputs.batch_slots->template getPtr<SizeType const>() : static_cast<SizeType*>(nullptr);
auto sequenceLengths = outputs.sequence_length ? outputs.sequence_length->template getPtr<SizeType>()
: static_cast<SizeType*>(nullptr);
auto acceptedLengths = outputs.acceptedLengths ? outputs.acceptedLengths->template getPtr<SizeType>()
: static_cast<SizeType*>(nullptr);
auto curTokensPerStepDevice = inputs.medusaCurTokensPerStep.template getPtr<SizeType>();
auto targetTokensPerStepDevice = inputs.medusaTargetTokensPerStep.template getPtr<SizeType>();
auto medusaInputLogitsPtrs = BufferRange<T*>(*mMedusaInputLogitsPtrs);
for (SizeType bi = 0; bi < batchSize; ++bi)
{
auto const slot = batchSlots[bi];
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
medusaInputLogitsPtrs[slot * mMaxNumHeads + hi] = inputs.medusaLogits[slot][hi].template getPtr<T>();
}
}
auto draftIds = outputs.nextDraftTokens ? outputs.nextDraftTokens->template getPtr<TokenIdType>() : nullptr;
TLLM_CHECK_WITH_INFO(draftIds != nullptr, "Draft ids must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(batchSlots != nullptr, "Batch slots must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(sequenceLengths != nullptr, "Sequence lengths must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(acceptedLengths != nullptr, "Accepted lengths must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(
curTokensPerStepDevice != nullptr, "Current tokens per step must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(
targetTokensPerStepDevice != nullptr, "Target tokens per step must be provided for MedusaDecoding");
auto finishedStates
= reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>());
// Compare draft tokens from outputIds with sampled target tokens at mTargetTokensDevice using paths.
// Select the longest accepted path, modify outputIds in-place, increment sequenceLengths accordingly.
// Fill mMedusaSelectedLogitsPtrsDevice with respective Medusa logits
acceptDraftTokensByIdsWithPaths(outputIds, draftIds, mTargetTokensDevice, sequenceLengths, acceptedLengths,
finishedStates, batchSlots, paths, endIds,
reinterpret_cast<T const**>(bufferCast<int64_t>(*mMedusaInputLogitsPtrs)),
const_cast<T const**>(mMedusaSelectedLogitsPtrsDevice), curTokensPerStepDevice, targetTokensPerStepDevice,
mBestPathIdsDevice, batchSize, mVocabSize, mMaxBatchSize, mMaxTokensPerStep, maxSeqLen, mMaxNumHeads,
mMaxTokensPerStep, mStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::sampleNewDraftTokens(DecodingOutputParams& outputs, MedusaForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
auto batchSlots
= inputs.batch_slots ? inputs.batch_slots->template getPtr<SizeType const>() : static_cast<SizeType*>(nullptr);
auto sequenceLengths = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<SizeType>() : nullptr;
TLLM_CHECK_WITH_INFO(batchSlots != nullptr, "Batch slots must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(sequenceLengths != nullptr, "Sequence lengths must be provided for MedusaDecoding");
// For each request we sample Head Num times for topK[hi] tokens
auto const batchSizeHeadNums = batchSize * mMaxNumHeads;
auto const maxBatchSizeHeadNums = mMaxBatchSize * mMaxNumHeads;
auto tiledBatchSlots = bufferCast<SizeType>(*mTiledBatchSlotsForward);
for (SizeType bi = 0; bi < batchSize; ++bi)
{
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
tiledBatchSlots[bi * mMaxNumHeads + hi] = mMaxNumHeads * batchSlots[bi] + hi;
}
}
auto draftIdsPtrs = reinterpret_cast<TokenIdType**>(bufferCast<int64_t>(*mDraftIdsPtrHost));
for (SizeType bi = 0; bi < batchSize; ++bi)
{
auto slot = batchSlots[bi];
for (SizeType hi = 0; hi < mMaxNumHeads; ++hi)
{
draftIdsPtrs[slot * mMaxNumHeads + hi]
= mNewDraftTokensDevice + slot * mMaxTokensPerStep + mCummulativeTopK[slot * mMaxNumHeads + hi];
}
}
invokeBatchTopKSampling(mSamplingWorkspaceDevice,
/* logits */ static_cast<T const*>(nullptr), const_cast<T const* const*>(mMedusaSelectedLogitsPtrsDevice),
draftIdsPtrs,
/* outputIds */ nullptr, /* sequenceLength */ nullptr,
/* finishedInput */ nullptr, /* finishedOutput */ nullptr,
/* cumLogProbs */ nullptr, /* outputLogProbs */ nullptr, mCurandStatesMedusaLogitsDevice,
mRuntimeMaxTopKPerRequestPerMedusaHead, mRuntimeTopKPerRequestPerMedusaHeadDevice, 1.0f,
/* runtimeTopPDevice */ nullptr, mVocabSizePadded, /* endIds */ nullptr, tiledBatchSlots, mStream,
batchSizeHeadNums, maxBatchSizeHeadNums,
/* tokensPerStep */ nullptr, /* maxTokensPerStep */ 1,
/* maxSeqLen (not required as outputIds is nullptr) */ 0,
/* skipDecode */ nullptr, /* normalizeLogProbs */ false,
/* probsComputed */ false, /* return all Top-K*/ true);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::scatterNewDraftTokens(DecodingOutputParams& outputs, MedusaForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
auto batchSlots
= inputs.batch_slots ? inputs.batch_slots->template getPtr<SizeType const>() : static_cast<SizeType*>(nullptr);
TLLM_CHECK_WITH_INFO(batchSlots != nullptr, "Batch slots must be provided for MedusaDecoding");
auto draftIds = outputs.nextDraftTokens ? outputs.nextDraftTokens->template getPtr<TokenIdType>() : nullptr;
auto tokensPerStepDevice = inputs.medusaCurTokensPerStep.template getPtr<SizeType>();
auto treeIds = inputs.treeIds.template getPtr<SizeType>();
TLLM_CHECK_WITH_INFO(draftIds != nullptr, "Draft ids must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(tokensPerStepDevice != nullptr, "Tokens per step must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(treeIds != nullptr, "Tree ids must be provided for MedusaDecoding");
scatterMedusaDraftTokens(draftIds, mNewDraftTokensDevice, treeIds, tokensPerStepDevice, batchSlots,
mMaxTokensPerStep, batchSize, mStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void MedusaDecodingLayer<T>::packAcceptedPaths(DecodingOutputParams& outputs, MedusaForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
auto paths = inputs.paths.template getPtr<SizeType const>();
auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<SizeType const>() : nullptr;
auto acceptedLengths = outputs.acceptedLengths ? outputs.acceptedLengths->template getPtr<SizeType>() : nullptr;
auto acceptedLengthsCumSum
= outputs.acceptedLengthsCumSum ? outputs.acceptedLengthsCumSum->template getPtr<SizeType>() : nullptr;
auto medusaPathsOffsets
= outputs.medusaPathsOffsets ? outputs.medusaPathsOffsets->template getPtr<SizeType>() : nullptr;
TLLM_CHECK_WITH_INFO(batchSlots != nullptr, "Batch slots must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(acceptedLengths != nullptr, "Accepted lengths must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(acceptedLengthsCumSum != nullptr, "acceptedLengthsCumSum must be provided for MedusaDecoding");
TLLM_CHECK_WITH_INFO(medusaPathsOffsets != nullptr, "medusaPathsOffsets must be provided for MedusaDecoding");
invokePackAcceptedPaths(acceptedLengthsCumSum, medusaPathsOffsets, acceptedLengths, mBestPathIdsDevice, paths,
batchSlots, batchSize, mMaxTokensPerStep, mMaxNumHeads + 1, mStream);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class MedusaDecodingLayer<float>;
template class MedusaDecodingLayer<half>;
} // namespace layers
} // namespace tensorrt_llm