TensorRT-LLMs/cpp/tensorrt_llm/layers/topPSamplingLayer.cu
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

369 lines
15 KiB
Plaintext

/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION. All rights reserved.
* Copyright (c) 2021, NAVER Corp. Authored by CLOVA.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tensorrt_llm/common/logger.h"
#include "tensorrt_llm/common/memoryUtils.h"
#include "tensorrt_llm/common/reduceKernelUtils.cuh"
#include "tensorrt_llm/kernels/decodingCommon.h"
#include "tensorrt_llm/kernels/samplingAirTopPKernels.h"
#include "tensorrt_llm/kernels/samplingTopKKernels.h"
#include "tensorrt_llm/kernels/samplingTopPKernels.h"
#include "tensorrt_llm/layers/topPSamplingLayer.h"
#include <algorithm>
#include <float.h>
using namespace tensorrt_llm::common;
using namespace tensorrt_llm::kernels;
using namespace tensorrt_llm::runtime;
namespace tensorrt_llm
{
namespace layers
{
static __global__ void setTopPRuntimeArgs(SizeType batchSize, SizeType topK, SizeType* topKs, SizeType topKsSize,
float topP, float* topPs, SizeType topPsSize, bool* skipDecode, SizeType const* batchSlots, float* initialTopPBuf)
{
/**
* @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
and top_k to top_ks.
*/
auto index = static_cast<SizeType>(blockIdx.x * blockDim.x + threadIdx.x);
for (SizeType bi = index; bi < batchSize; bi += static_cast<SizeType>(gridDim.x * blockDim.x))
{
auto const batchSlot = batchSlots != nullptr ? batchSlots[bi] : bi;
auto k = topKsSize > 1 ? topKs[batchSlot] : topK;
auto const p = topPsSize > 1 ? topPs[batchSlot] : topP;
if (k == 0 && p == 0.0f)
{
// TensorRT-LLM's topp implementation does not support topp = 0.0f, but it
// equivalent to greedy search. So, we set the topk = 1 as an alternative
// solution.
k = 1;
}
topKs[batchSlot] = k;
topPs[batchSlot] = p;
skipDecode[batchSlot] = k > 0;
initialTopPBuf[batchSlot] = topPs[batchSlot];
}
}
template <typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(SizeType maxBatchSize, SizeType vocabSize, SizeType vocabSizePadded,
cudaStream_t stream, std::shared_ptr<IAllocator> allocator, cudaDeviceProp* prop, bool isDeterministic,
bool isAirTopP)
: BaseSamplingLayer<T>(maxBatchSize, vocabSize, vocabSizePadded, stream, std::move(allocator), prop)
, mIsDeterministic(isDeterministic)
, mIsAirTopP(isAirTopP)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
allocateBuffer(mMaxBatchSize);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
TopPSamplingLayer<T>::~TopPSamplingLayer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
freeBuffer();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::allocateBuffer(SizeType batchSize)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
if (mIsAirTopP == false)
{
mSamplingWorkspaceSize = getTopPWorkspaceSize<T>(batchSize, mVocabSizePadded);
}
else
{
mSamplingWorkspaceSize = getAirTopPWorkspaceSize<T>(batchSize, mVocabSizePadded, mIsDeterministic);
}
std::array<size_t, 11> deviceBufferSizes;
deviceBufferSizes[0] = sizeof(TokenIdType) * batchSize * mVocabSizePadded;
deviceBufferSizes[1] = sizeof(SizeType) * (batchSize + 1);
deviceBufferSizes[2] = sizeof(SizeType) * (batchSize + 1);
deviceBufferSizes[3] = sizeof(SizeType) * batchSize;
deviceBufferSizes[4] = sizeof(float) * batchSize;
deviceBufferSizes[5] = sizeof(float) * batchSize;
deviceBufferSizes[6] = sizeof(float) * batchSize;
deviceBufferSizes[7] = sizeof(float) * batchSize;
deviceBufferSizes[8] = sizeof(TokenIdType) * batchSize;
deviceBufferSizes[9] = sizeof(bool) * batchSize;
deviceBufferSizes[10] = *std::max_element(&deviceBufferSizes[3], &deviceBufferSizes[9]);
mTopPIdValsDevice = mAllocator->reMalloc(mTopPIdValsDevice, deviceBufferSizes[0], false);
mTopPOffsetDevice = mAllocator->reMalloc(mTopPOffsetDevice, deviceBufferSizes[1], false);
mBeginTopPOffsetDevice = mAllocator->reMalloc(mBeginTopPOffsetDevice, deviceBufferSizes[2], false);
mRuntimeTopKDevice = mAllocator->reMalloc(mRuntimeTopKDevice, deviceBufferSizes[3], false);
mRuntimeTopPDevice = mAllocator->reMalloc(mRuntimeTopPDevice, deviceBufferSizes[4], false);
mInitialTopPDevice = mAllocator->reMalloc(mInitialTopPDevice, deviceBufferSizes[5], false);
mTopPDecayDevice = mAllocator->reMalloc(mTopPDecayDevice, deviceBufferSizes[6], false);
mTopPMinDevice = mAllocator->reMalloc(mTopPMinDevice, deviceBufferSizes[7], false);
mTopPResetIdsDevice = mAllocator->reMalloc(mTopPResetIdsDevice, deviceBufferSizes[8], false);
mSkipDecodeDevice = mAllocator->reMalloc(mSkipDecodeDevice, deviceBufferSizes[9], false);
mSetupWorkspaceDevice = mAllocator->reMalloc(mSetupWorkspaceDevice, deviceBufferSizes[10], false);
mSkipDecodeHost = static_cast<bool*>(std::realloc(mSkipDecodeHost, sizeof(bool) * batchSize));
std::fill(mSkipDecodeHost, mSkipDecodeHost + batchSize, true);
mAllocatedSize = std::accumulate(deviceBufferSizes.begin(), deviceBufferSizes.end(), 0);
TLLM_LOG_DEBUG("topPSamplingLayer allocated %lu bytes on GPU", mAllocatedSize);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::freeBuffer()
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
mAllocator->free((void**) (&mTopPIdValsDevice));
mAllocator->free((void**) (&mTopPOffsetDevice));
mAllocator->free((void**) (&mBeginTopPOffsetDevice));
mAllocator->free((void**) (&mRuntimeTopKDevice));
mAllocator->free((void**) (&mRuntimeTopPDevice));
mAllocator->free((void**) (&mInitialTopPDevice));
mAllocator->free((void**) (&mTopPDecayDevice));
mAllocator->free((void**) (&mTopPMinDevice));
mAllocator->free((void**) (&mTopPResetIdsDevice));
mAllocator->free((void**) (&mSkipDecodeDevice));
mAllocator->free((void**) (&mSetupWorkspaceDevice));
std::free(mSkipDecodeHost);
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::setup(SizeType const batchSize, SizeType const* batchSlots, SetupParams const& setupParams)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
SizeType const defaultTopK = 0;
auto runtimeTopK = setupParams.runtime_top_k.value_or(std::vector<SizeType>{defaultTopK});
auto runtimeTopP = setupParams.runtime_top_p.value_or(std::vector<float>{});
auto const runtimeTopKSize = runtimeTopK.size();
auto const runtimeTopPSize = runtimeTopP.size();
auto const defaultTopPDecay{1.0f};
auto decayVec = setupParams.top_p_decay.value_or(std::vector<float>(batchSize, defaultTopPDecay));
auto const defaultTopPMin{1e-6f}; // prevent topp becoming 0.0
auto topPMinVec = setupParams.top_p_min.value_or(std::vector<float>(batchSize, defaultTopPMin));
SizeType const defaultTopPResetId{-1};
auto topPResetIdsVec = setupParams.top_p_reset_ids.value_or(std::vector<SizeType>(batchSize, defaultTopPResetId));
if (runtimeTopPSize == 0)
{
for (SizeType bi = 0; bi < static_cast<SizeType>(batchSize); ++bi)
{
auto bid = bi;
if (batchSlots)
{
bid = batchSlots[bi];
}
mSkipDecodeHost[bid] = true;
}
cudaAutoCpy(mSkipDecodeDevice, mSkipDecodeHost, mMaxBatchSize, mStream);
return;
}
for (auto& topP : runtimeTopP)
{
if (topP < 0.f || topP > 1.0f)
{
TLLM_LOG_WARNING("TopP (%f) is out of range ([0.0, 1.0f]). Clip to closest number.", topP);
topP = std::clamp(topP, 0.f, 1.f);
}
}
for (auto& decay : decayVec)
{
if (decay <= 0.f || decay > 1.0f)
{
TLLM_LOG_WARNING("Decay (%f) is out of range ([0.0, 1.0f]). Change to 1.0.", decay);
decay = 1.0f;
}
}
for (auto& topPMin : topPMinVec)
{
if (topPMin <= 0.f || topPMin > 1.0f)
{
TLLM_LOG_WARNING("TopP min (%f) is out of range ([0.0, 1.0f]). Change to 0.5.", topPMin);
topPMin = 0.5f;
}
}
auto const topK = runtimeTopK.at(0);
auto const topP = runtimeTopP.at(0);
if (runtimeTopKSize > 1)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType>(runtimeTopK.size()) == batchSize,
fmtstr("runtimeTopK.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopK.size(), batchSize));
cudaAutoCpy(reinterpret_cast<SizeType*>(mSetupWorkspaceDevice), runtimeTopK.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<SizeType*>(mSetupWorkspaceDevice), mRuntimeTopKDevice, batchSlots, batchSize, mStream);
}
if (runtimeTopPSize > 1)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType>(runtimeTopP.size()) == batchSize,
fmtstr("runtime_top_p.size() (%lu) == batchSize (%d) is not satisfied!", runtimeTopP.size(), batchSize));
cudaAutoCpy(reinterpret_cast<float*>(mSetupWorkspaceDevice), runtimeTopP.data(), batchSize, mStream);
invokeScatterDecodingParams(
reinterpret_cast<float*>(mSetupWorkspaceDevice), mRuntimeTopPDevice, batchSlots, batchSize, mStream);
}
auto fillBuffers
= [this, &batchSize, &batchSlots](std::string name, auto const& vector, auto deviceTmpBuffer, auto deviceBuffer)
{
TLLM_CHECK_WITH_INFO(static_cast<SizeType>(vector.size()) == batchSize,
fmtstr("%s.size() (%lu) == batchSize (%d) is not satisfied!", name.c_str(), vector.size(), batchSize));
cudaAutoCpy(deviceTmpBuffer, vector.data(), batchSize, mStream);
invokeScatterDecodingParams(deviceTmpBuffer, deviceBuffer, batchSlots, batchSize, mStream);
};
fillBuffers("top_p_decay", decayVec, reinterpret_cast<float*>(mSetupWorkspaceDevice), mTopPDecayDevice);
fillBuffers("top_p_min", topPMinVec, reinterpret_cast<float*>(mSetupWorkspaceDevice), mTopPMinDevice);
fillBuffers(
"top_p_reset_ids", topPResetIdsVec, reinterpret_cast<TokenIdType*>(mSetupWorkspaceDevice), mTopPResetIdsDevice);
{
dim3 block(std::min(static_cast<SizeType>(batchSize), 256));
dim3 grid(divUp(static_cast<SizeType>(batchSize), static_cast<SizeType>(block.x)));
setTopPRuntimeArgs<<<grid, block, 0, mStream>>>(batchSize, topK, mRuntimeTopKDevice, runtimeTopKSize, topP,
mRuntimeTopPDevice, runtimeTopPSize, mSkipDecodeDevice, batchSlots, mInitialTopPDevice);
sync_check_cuda_error();
}
cudaAutoCpy(mSkipDecodeHost, mSkipDecodeDevice, mMaxBatchSize, mStream);
std::vector<float> runtimeTopPs(mMaxBatchSize);
cudaAutoCpy(runtimeTopPs.data(), mRuntimeTopPDevice, mMaxBatchSize, mStream);
{
auto maxTopP = 0.f;
for (SizeType bi = 0; bi < static_cast<SizeType>(batchSize); ++bi)
{
auto const bid = batchSlots ? batchSlots[bi] : bi;
maxTopP = std::max(maxTopP, runtimeTopPs[bid]);
}
mRuntimeMaxTopP = std::max(mRuntimeMaxTopP, maxTopP);
}
if (mIsAirTopP == true)
{
int smCnt = 0;
if (mCudaDeviceProp)
{
smCnt = mCudaDeviceProp->multiProcessorCount;
}
if (smCnt <= 0)
{
int deviceId;
check_cuda_error(cudaGetDevice(&deviceId)); // Get the correct device id
cudaDeviceProp prop;
check_cuda_error(cudaGetDeviceProperties(&prop, deviceId));
smCnt = prop.multiProcessorCount;
}
mAirTopPBlockNum = calcAirTopPBlockNum<T>(batchSize, (int) mVocabSizePadded, smCnt, mIsDeterministic);
}
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template <typename T>
void TopPSamplingLayer<T>::forward(DecodingOutputParams& outputs, ForwardParams& inputs)
{
TLLM_LOG_TRACE("%s start", __PRETTY_FUNCTION__);
auto const batchSize = inputs.logits.shape[0];
// Probabilities must be already computed instead of logits
auto probs = inputs.logits.template getPtr<T>();
auto endIds = inputs.end_ids.template getPtr<TokenIdType const>();
auto batchSlots = inputs.batch_slots ? inputs.batch_slots->template getPtr<SizeType const>() : nullptr;
auto curandStatesDevice = inputs.curand_states;
auto samplingWorkspaceDevice = inputs.sampling_workspace;
TLLM_CHECK_WITH_INFO(curandStatesDevice, "No curand states provided");
TLLM_CHECK_WITH_INFO(samplingWorkspaceDevice, "No sampling workspace provided");
if (mIsAirTopP == false)
{
invokeTopPInitialize(
mTopPIdValsDevice, mTopPOffsetDevice, mBeginTopPOffsetDevice, batchSize, mVocabSizePadded, mStream);
sync_check_cuda_error();
}
FinishedState* finishedInput = (inputs.finished)
? reinterpret_cast<FinishedState*>(inputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
FinishedState* finishedOutput = (outputs.finished)
? reinterpret_cast<FinishedState*>(outputs.finished->template getPtr<FinishedState::UnderlyingType>())
: nullptr;
auto cumLogProbs
= (outputs.cum_log_probs) ? outputs.cum_log_probs->template getPtr<float>() : static_cast<float*>(nullptr);
auto outputLogProbs = (outputs.output_log_probs) ? outputs.output_log_probs->template getPtr<float>()
: static_cast<float*>(nullptr);
auto sequenceLength = (outputs.sequence_length) ? outputs.sequence_length->template getPtr<SizeType>()
: static_cast<SizeType*>(nullptr);
if (mIsAirTopP == false)
{
invokeBatchTopPSampling<T>(samplingWorkspaceDevice, outputs.output_ids_ptr.template getPtr<int*>(),
sequenceLength, finishedInput, finishedOutput, cumLogProbs, outputLogProbs, probs, mTopPIdValsDevice,
mTopPOffsetDevice, mBeginTopPOffsetDevice, curandStatesDevice, batchSize, mMaxBatchSize, mVocabSizePadded,
endIds, mRuntimeMaxTopP, mRuntimeTopPDevice, mStream, mSkipDecodeDevice, batchSlots);
}
else
{
invokeBatchAirTopPSampling<T>(samplingWorkspaceDevice, outputs.output_ids_ptr.template getPtr<int*>(),
sequenceLength, finishedInput, finishedOutput, cumLogProbs, outputLogProbs, probs, curandStatesDevice,
batchSize, mMaxBatchSize, mVocabSizePadded, endIds, mRuntimeMaxTopP, mRuntimeTopPDevice, mStream,
mAirTopPBlockNum, mSkipDecodeDevice, batchSlots, mIsDeterministic);
}
sync_check_cuda_error();
invokeComputeToppDecay(mRuntimeTopPDevice, mInitialTopPDevice,
outputs.output_ids_ptr.template getPtr<TokenIdType const*>(), mTopPDecayDevice, mTopPMinDevice,
mTopPResetIdsDevice, sequenceLength, batchSlots, batchSize, mStream);
sync_check_cuda_error();
TLLM_LOG_TRACE("%s stop", __PRETTY_FUNCTION__);
}
template class TopPSamplingLayer<float>;
template class TopPSamplingLayer<half>;
} // namespace layers
} // namespace tensorrt_llm