TensorRT-LLMs/cpp/tests/kernels/sampling/samplingAirTopPTest.cpp
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

143 lines
5.5 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TOP_LEVEL_DIR
#error "Define TOP_LEVEL_DIR"
#endif
#include "tests/kernels/sampling/samplingTest.h"
#include <random>
namespace tc = tensorrt_llm::common;
namespace tk = tensorrt_llm::kernels;
namespace trk = tensorrt_llm::runtime::kernels;
using namespace tensorrt_llm::runtime;
using namespace tensorrt_llm::tests::kernels::sampling;
namespace
{
template <typename T>
class AirTopPSamplingKernelTest : public SamplingKernelTest<T>
{
protected:
const int32_t endId = 0;
using SamplingKernelTest<T>::mSeed;
using SamplingKernelTest<T>::mStream;
using SamplingKernelTest<T>::mBufferManager;
private:
size_t getWorkspaceSize(SamplingKernelTestParam const& params) override
{
return tensorrt_llm::kernels::getAirTopPWorkspaceSize<T>(
params.batchSize, params.vocabSize, params.isDeterministicTopP);
}
void callTestedFunction(
SamplingKernelTestParam const& params, tensorrt_llm::runtime::ITensor::SharedPtr& workspaceDevice) override
{
// Calculate the number of blocks based on the number of multiprocessors, batchSize and vocabSize.
int dev;
int smCnt;
TLLM_CUDA_CHECK(cudaGetDevice(&dev));
TLLM_CUDA_CHECK(cudaDeviceGetAttribute(&smCnt, cudaDevAttrMultiProcessorCount, dev));
auto const maxBatchSize = 2 * params.batchSize;
int blockNum
= tk::calcAirTopPBlockNum<T>(params.batchSize, params.vocabSize, smCnt, params.isDeterministicTopP);
// Perform batched TopP sampling
tk::invokeBatchAirTopPSampling<T>(workspaceDevice->data(), bufferCast<int*>(*this->mIdsPtrHost),
bufferCast<int32_t>(*this->mSeqLengthsDevice),
reinterpret_cast<tensorrt_llm::kernels::FinishedState*>(
bufferCast<tensorrt_llm::kernels::FinishedState::UnderlyingType>(*this->mFinishedDevice)),
reinterpret_cast<tensorrt_llm::kernels::FinishedState*>(
bufferCast<tensorrt_llm::kernels::FinishedState::UnderlyingType>(*this->mFinishedDevice)),
bufferCast<float>(*this->mCumLogProbsDevice), bufferCast<float>(*this->mOutputLogProbsDevice),
// Note that the kernel needs vocab probs instead of
// log-prob if cum_log_probs or output_log_probs are
// provided. It's because the sampling layer already
// preprocesses log_prob_buf when those are provided.
bufferCast<T>(*this->mProbsDevice),
reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*this->mCurandStatesDevice)), params.batchSize,
maxBatchSize, params.vocabSize, bufferCast<int32_t>(*this->mEndIdsDevice), this->mMaxTopP,
bufferCast<float>(*this->mTopPsDevice), this->mStream->get(), blockNum,
bufferCast<bool>(*this->mSkipDecodeDevice), bufferCast<int32_t>(*this->mBatchSlots),
params.isDeterministicTopP);
}
};
TYPED_TEST_SUITE(AirTopPSamplingKernelTest, FloatAndHalfTypes);
TYPED_TEST(AirTopPSamplingKernelTest, NondeterministicCorrectnessSmallP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopP(0.2f));
};
TYPED_TEST(AirTopPSamplingKernelTest, NondeterministicCorrectnessLargeP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopP(0.9f));
};
TYPED_TEST(AirTopPSamplingKernelTest, NondeterministicCorrectnessAncestral)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopP(1.0f));
};
TYPED_TEST(AirTopPSamplingKernelTest, NondeterministicCorrectnessLargeVocabSmallP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(32).setVocabSize(51200).setTopP(0.2f));
};
TYPED_TEST(AirTopPSamplingKernelTest, NondeterministicCorrectnessLargeVocabLargeP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(32).setVocabSize(51200).setTopP(0.9f));
};
TYPED_TEST(AirTopPSamplingKernelTest, DeterministicCorrectnessSmallP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopP(0.2f).setDeterministicTopP(true));
};
TYPED_TEST(AirTopPSamplingKernelTest, DeterministicCorrectnessLargeP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopP(0.9f).setDeterministicTopP(true));
};
TYPED_TEST(AirTopPSamplingKernelTest, DeterministicCorrectnessAncestral)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopP(1.0f).setDeterministicTopP(true));
};
TYPED_TEST(AirTopPSamplingKernelTest, DeterministicCorrectnessLargeVocabSmallP)
{
this->runTest(
SamplingKernelTestParam().setBatchSize(32).setVocabSize(51200).setTopP(0.2f).setDeterministicTopP(true));
};
TYPED_TEST(AirTopPSamplingKernelTest, DeterministicCorrectnessLargeVocabLargeP)
{
this->runTest(
SamplingKernelTestParam().setBatchSize(32).setVocabSize(51200).setTopP(0.9f).setDeterministicTopP(true));
};
class AirTopPSamplingKernelUtilsTest : public SamplingKernelTest<float>
{
};
} // end of namespace