mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
144 lines
5.6 KiB
C++
144 lines
5.6 KiB
C++
/*
|
|
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#ifndef TOP_LEVEL_DIR
|
|
#error "Define TOP_LEVEL_DIR"
|
|
#endif
|
|
|
|
#include "tensorrt_llm/common/tllmException.h"
|
|
#include "tests/kernels/sampling/samplingTest.h"
|
|
#include <random>
|
|
|
|
namespace tc = tensorrt_llm::common;
|
|
namespace tk = tensorrt_llm::kernels;
|
|
namespace trk = tensorrt_llm::runtime::kernels;
|
|
|
|
using namespace tensorrt_llm::runtime;
|
|
using namespace tensorrt_llm::tests::kernels::sampling;
|
|
|
|
namespace
|
|
{
|
|
|
|
template <typename T>
|
|
class TopKSamplingKernelTest : public SamplingKernelTest<T>
|
|
{
|
|
|
|
protected:
|
|
int32_t const endId = 0;
|
|
using SamplingKernelTest<T>::mSeed;
|
|
using SamplingKernelTest<T>::mStream;
|
|
using SamplingKernelTest<T>::mBufferManager;
|
|
|
|
size_t getWorkspaceSize(SamplingKernelTestParam const& params) override
|
|
{
|
|
return tk::getTopKWorkspaceSize<T>(params.batchSize, params.maxTokensPerStep, this->mMaxTopK, params.vocabSize);
|
|
}
|
|
|
|
void callTestedFunction(
|
|
SamplingKernelTestParam const& params, tensorrt_llm::runtime::ITensor::SharedPtr& workspaceDevice) override
|
|
{
|
|
auto const maxBatchSize = 2 * params.batchSize;
|
|
// Perform batched TopK sampling
|
|
tk::invokeBatchTopKSampling(workspaceDevice->data(),
|
|
// Note that the kernel needs vocab probs instead of
|
|
// log-prob if cum_log_probs or output_log_probs are
|
|
// provided. It's because the sampling layer already
|
|
// preprocesses log_prob_buf when those are provided.
|
|
params.useLogitsPtrs ? nullptr : bufferCast<T>(*this->mProbsDevice),
|
|
params.useLogitsPtrs ? reinterpret_cast<T const* const*>(bufferCast<int64_t>(*this->mProbsPtrsDevice))
|
|
: nullptr,
|
|
bufferCast<int32_t*>(*this->mIdsPtrHost), nullptr, bufferCast<int32_t>(*this->mSeqLengthsDevice),
|
|
reinterpret_cast<tensorrt_llm::kernels::FinishedState*>(
|
|
bufferCast<tensorrt_llm::kernels::FinishedState::UnderlyingType>(*this->mFinishedDevice)),
|
|
reinterpret_cast<tensorrt_llm::kernels::FinishedState*>(
|
|
bufferCast<tensorrt_llm::kernels::FinishedState::UnderlyingType>(*this->mFinishedDevice)),
|
|
bufferCast<float>(*this->mCumLogProbsDevice), bufferCast<float>(*this->mOutputLogProbsDevice),
|
|
reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*this->mCurandStatesDevice)), this->mMaxTopK,
|
|
bufferCast<int32_t>(*this->mTopKsDevice), params.topP, bufferCast<float>(*this->mTopPsDevice),
|
|
params.vocabSize, bufferCast<int32_t>(*this->mEndIdsDevice), bufferCast<int32_t>(*this->mBatchSlots),
|
|
this->mStream->get(), params.batchSize, maxBatchSize, bufferCast<int32_t>(*this->mTokensPerStep),
|
|
params.maxTokensPerStep, 0, bufferCast<bool>(*this->mSkipDecodeDevice), params.normalizeLogProbs,
|
|
params.logitsHasProbs, params.returnAllTopK);
|
|
}
|
|
};
|
|
|
|
TYPED_TEST_SUITE(TopKSamplingKernelTest, FloatAndHalfTypes);
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessGreedy)
|
|
{
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopK(1).setTopP(1.0f));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessGreedyLarge)
|
|
{
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(51200).setTopK(1).setTopP(1.0f));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessAncestral)
|
|
{
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopK(4).setTopP(1.0f));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessLargeK63)
|
|
{
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(51200).setTopK(63).setTopP(1.0f));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessLargeK1024)
|
|
{
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(51200).setTopK(1024).setTopP(1.0f));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessTopKTopP)
|
|
{
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(4000).setTopK(63).setTopP(0.3f));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, NotSupportedLargerThanK1024)
|
|
{
|
|
EXPECT_THROW(
|
|
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(4000).setTopK(1025).setTopP(1.0f)),
|
|
tensorrt_llm::common::TllmException);
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessTopKMaxTokensPerStep)
|
|
{
|
|
this->runTest(
|
|
SamplingKernelTestParam().setBatchSize(16).setVocabSize(4000).setTopK(63).setTopP(1.0f).setMaxTokensPerStep(4));
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessReturnAllTopK)
|
|
{
|
|
this->runTest(SamplingKernelTestParam()
|
|
.setBatchSize(16)
|
|
.setVocabSize(50)
|
|
.setTopK(10)
|
|
.setTopP(1.0f)
|
|
.setMaxTokensPerStep(4)
|
|
.setReturnAllTopK());
|
|
};
|
|
|
|
TYPED_TEST(TopKSamplingKernelTest, CorrectnessLogitsPtrs)
|
|
{
|
|
this->runTest(SamplingKernelTestParam()
|
|
.setBatchSize(16)
|
|
.setVocabSize(50)
|
|
.setTopK(10)
|
|
.setTopP(1.0f)
|
|
.setMaxTokensPerStep(4)
|
|
.setUseLogitsPtrs());
|
|
};
|
|
} // end of namespace
|