TensorRT-LLMs/cpp/tests/kernels/sampling/samplingTopKTest.cpp
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

144 lines
5.6 KiB
C++

/*
* Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TOP_LEVEL_DIR
#error "Define TOP_LEVEL_DIR"
#endif
#include "tensorrt_llm/common/tllmException.h"
#include "tests/kernels/sampling/samplingTest.h"
#include <random>
namespace tc = tensorrt_llm::common;
namespace tk = tensorrt_llm::kernels;
namespace trk = tensorrt_llm::runtime::kernels;
using namespace tensorrt_llm::runtime;
using namespace tensorrt_llm::tests::kernels::sampling;
namespace
{
template <typename T>
class TopKSamplingKernelTest : public SamplingKernelTest<T>
{
protected:
int32_t const endId = 0;
using SamplingKernelTest<T>::mSeed;
using SamplingKernelTest<T>::mStream;
using SamplingKernelTest<T>::mBufferManager;
size_t getWorkspaceSize(SamplingKernelTestParam const& params) override
{
return tk::getTopKWorkspaceSize<T>(params.batchSize, params.maxTokensPerStep, this->mMaxTopK, params.vocabSize);
}
void callTestedFunction(
SamplingKernelTestParam const& params, tensorrt_llm::runtime::ITensor::SharedPtr& workspaceDevice) override
{
auto const maxBatchSize = 2 * params.batchSize;
// Perform batched TopK sampling
tk::invokeBatchTopKSampling(workspaceDevice->data(),
// Note that the kernel needs vocab probs instead of
// log-prob if cum_log_probs or output_log_probs are
// provided. It's because the sampling layer already
// preprocesses log_prob_buf when those are provided.
params.useLogitsPtrs ? nullptr : bufferCast<T>(*this->mProbsDevice),
params.useLogitsPtrs ? reinterpret_cast<T const* const*>(bufferCast<int64_t>(*this->mProbsPtrsDevice))
: nullptr,
bufferCast<int32_t*>(*this->mIdsPtrHost), nullptr, bufferCast<int32_t>(*this->mSeqLengthsDevice),
reinterpret_cast<tensorrt_llm::kernels::FinishedState*>(
bufferCast<tensorrt_llm::kernels::FinishedState::UnderlyingType>(*this->mFinishedDevice)),
reinterpret_cast<tensorrt_llm::kernels::FinishedState*>(
bufferCast<tensorrt_llm::kernels::FinishedState::UnderlyingType>(*this->mFinishedDevice)),
bufferCast<float>(*this->mCumLogProbsDevice), bufferCast<float>(*this->mOutputLogProbsDevice),
reinterpret_cast<curandState_t*>(bufferCast<int8_t>(*this->mCurandStatesDevice)), this->mMaxTopK,
bufferCast<int32_t>(*this->mTopKsDevice), params.topP, bufferCast<float>(*this->mTopPsDevice),
params.vocabSize, bufferCast<int32_t>(*this->mEndIdsDevice), bufferCast<int32_t>(*this->mBatchSlots),
this->mStream->get(), params.batchSize, maxBatchSize, bufferCast<int32_t>(*this->mTokensPerStep),
params.maxTokensPerStep, 0, bufferCast<bool>(*this->mSkipDecodeDevice), params.normalizeLogProbs,
params.logitsHasProbs, params.returnAllTopK);
}
};
TYPED_TEST_SUITE(TopKSamplingKernelTest, FloatAndHalfTypes);
TYPED_TEST(TopKSamplingKernelTest, CorrectnessGreedy)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopK(1).setTopP(1.0f));
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessGreedyLarge)
{
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(51200).setTopK(1).setTopP(1.0f));
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessAncestral)
{
this->runTest(SamplingKernelTestParam().setBatchSize(6).setVocabSize(4).setTopK(4).setTopP(1.0f));
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessLargeK63)
{
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(51200).setTopK(63).setTopP(1.0f));
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessLargeK1024)
{
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(51200).setTopK(1024).setTopP(1.0f));
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessTopKTopP)
{
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(4000).setTopK(63).setTopP(0.3f));
};
TYPED_TEST(TopKSamplingKernelTest, NotSupportedLargerThanK1024)
{
EXPECT_THROW(
this->runTest(SamplingKernelTestParam().setBatchSize(16).setVocabSize(4000).setTopK(1025).setTopP(1.0f)),
tensorrt_llm::common::TllmException);
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessTopKMaxTokensPerStep)
{
this->runTest(
SamplingKernelTestParam().setBatchSize(16).setVocabSize(4000).setTopK(63).setTopP(1.0f).setMaxTokensPerStep(4));
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessReturnAllTopK)
{
this->runTest(SamplingKernelTestParam()
.setBatchSize(16)
.setVocabSize(50)
.setTopK(10)
.setTopP(1.0f)
.setMaxTokensPerStep(4)
.setReturnAllTopK());
};
TYPED_TEST(TopKSamplingKernelTest, CorrectnessLogitsPtrs)
{
this->runTest(SamplingKernelTestParam()
.setBatchSize(16)
.setVocabSize(50)
.setTopK(10)
.setTopP(1.0f)
.setMaxTokensPerStep(4)
.setUseLogitsPtrs());
};
} // end of namespace