TensorRT-LLMs/examples/high-level-api/llm_examples.py
Kaiyu Xie 250d9c293d
Update TensorRT-LLM Release branch (#1445)
* Update TensorRT-LLM

---------

Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com>
Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com>
Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com>
Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
2024-04-12 17:59:19 +08:00

282 lines
9.8 KiB
Python

#!/usr/bin/env python3
import asyncio
import inspect
import sys
from argparse import ArgumentParser
from typing import List, Optional
import torch
from tensorrt_llm import LLM, ModelConfig, logger
from tensorrt_llm.hlapi.llm import KvCacheConfig, SamplingConfig
from tensorrt_llm.hlapi.utils import get_device_count
from tensorrt_llm.quantization import QuantAlgo
# NOTE, Currently, the following examples are only available for LLaMA models.
def run_llm_from_huggingface_model(prompts: List[str],
llama_model_dir: str,
dump_engine_dir: Optional[str] = None,
tp_size: int = 1):
''' Loading a HuggingFace model. '''
if get_device_count() < tp_size:
print(
"Skip the example for TP!!! Since the number of GPUs is less than required"
)
return
if tp_size > 1:
print(f'Running LLM with Tensor Parallel on {tp_size} GPUs.')
config = ModelConfig(llama_model_dir)
config.parallel_config.tp_size = tp_size
llm = LLM(config)
if dump_engine_dir:
llm.save(dump_engine_dir)
for output in llm.generate(prompts):
print(output)
def run_llm_from_tllm_engine(prompts: List[str],
llama_engine_dir: str,
tp_size: int = 1):
''' Loading a built TensorRT-LLM engine. '''
config = ModelConfig(llama_engine_dir)
config.parallel_config.tp_size = tp_size
llm = LLM(config)
for output in llm.generate(prompts):
print(output)
def run_llm_without_tokenizer_from_engine_or_ckpt(engine_or_ckpt_dir: str):
''' Loading a TensorRT-LLM engine built by trtllm-build or a TensorRT-LLM checkpoint generated by convert_checkpoint.py, and the tokenizer is missing too. '''
config = ModelConfig(engine_or_ckpt_dir)
llm = LLM(config)
# since tokenizer is missing, so we cannot get a default sampling config, create one manually
sampling_config = SamplingConfig(end_id=2, pad_id=2)
prompts = [[23, 14, 3]]
for output in llm.generate(prompts, sampling_config=sampling_config):
print(output)
def run_llm_generate_async_example(prompts: List[str],
llama_model_dir: str,
streaming: bool = False,
tp_size: int = 1):
''' Running LLM generation asynchronously. '''
if get_device_count() < tp_size:
print(
"Skip the example for TP!!! Since the number of GPUs is less than required"
)
return
if tp_size > 1:
print(f'Running LLM with Tensor Parallel on {tp_size} GPUs.')
config = ModelConfig(llama_model_dir)
config.parallel_config.tp_size = tp_size
llm = LLM(config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4))
async def task(prompt: str):
outputs = []
async for output in llm.generate_async(prompt, streaming=streaming):
outputs.append(output.text)
print(' '.join(outputs))
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
def run_llm_with_quantization(prompts: List[str],
llama_model_dir: str,
quant_type: str = 'int4_awq'):
''' Running LLM with quantization.
quant_type could be 'int4_awq' or 'fp8'.
'''
major, minor = torch.cuda.get_device_capability()
if not (major >= 8):
print("Quantization currently only supported on post Ampere")
return
if 'fp8' in quant_type:
if not (major > 8):
print("Hopper GPUs are required for fp8 quantization")
return
config = ModelConfig(llama_model_dir)
if quant_type == 'int4_awq':
config.quant_config.quant_algo = QuantAlgo.W4A16_AWQ
else:
config.quant_config.quant_algo = QuantAlgo.FP8
config.quant_config.kv_cache_quant_algo = QuantAlgo.FP8
config.quant_config.exclude_modules = ["lm_head"]
llm = LLM(config)
for output in llm.generate(prompts):
print(output)
def run_llm_with_async_future(prompts: List[str], llama_model_dir: str):
config = ModelConfig(llama_model_dir)
llm = LLM(config,
kv_cache_config=KvCacheConfig(free_gpu_memory_fraction=0.4))
# The result of generate() is similar to a Future, it won't block the main thread, call .result() to explicitly wait for the result
for generation in llm.generate_async(prompts):
# .result() is a blocking call, call it when you want to wait for the result
output = generation.result()
print(output.text)
# Similar to .result(), there is an async version of .result(), which is .aresult(), and it works with the generate_async().
async def task(prompt: str):
generation = llm.generate_async(prompt, streaming=False)
output = await generation.aresult()
print(output.text)
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
def run_llm_with_auto_parallel(prompts: List[str],
llama_model_dir: str,
world_size: int = 1):
''' Running LLM with auto parallel enabled. '''
if get_device_count() < world_size:
print(
"Skip the example for auto parallel!!! Since the number of GPUs is less than required"
)
return
if world_size > 1:
print(f'Running LLM with Auto Parallel on {world_size} GPUs.')
config = ModelConfig(llama_model_dir)
config.parallel_config.auto_parallel = True
config.parallel_config.world_size = world_size
llm = LLM(config)
for output in llm.generate(prompts):
print(output)
def run_llm_with_auto_parallel_async(prompts: List[str],
llama_model_dir: str,
world_size: int = 1,
streaming: bool = False):
''' Running LLM asynchronously with auto parallel enabled. '''
if get_device_count() < world_size:
print(
"Skip the example for auto parallel!!! Since the number of GPUs is less than required"
)
return
if world_size > 1:
print(f'Running LLM with Auto Parallel on {world_size} GPUs.')
config = ModelConfig(llama_model_dir)
config.parallel_config.auto_parallel = True
config.parallel_config.world_size = world_size
llm = LLM(config)
async def task(prompt: str):
outputs = []
async for output in llm.generate_async(prompt, streaming=streaming):
outputs.append(output.text)
print(' '.join(outputs))
async def main():
tasks = [task(prompt) for prompt in prompts]
await asyncio.gather(*tasks)
asyncio.run(main())
def _parse_arguments():
parser = ArgumentParser()
parser.add_argument('--task', type=str, choices=_get_functions())
parser.add_argument('--hf_model_dir',
type=str,
help='The directory of the model.')
parser.add_argument('--dump_engine_dir',
type=str,
help='The directory to dump the engine.',
default=None)
parser.add_argument('--ckpt_dir',
type=str,
help='The directory of the TRT-LLM checkpoint.',
default=None)
parser.add_argument('--quant_type', type=str, choices=['int4_awq', 'fp8'])
parser.add_argument('--prompt', type=str, default="What is LLM?")
parser.add_argument('--world_size', type=int, default=1)
parser.add_argument('--tp_size', type=int, default=1)
parser.add_argument('--streaming', action='store_true')
parser.add_argument('--log_level', type=str, default='info')
return parser.parse_args()
def _get_functions():
cur_module = sys.modules[__name__]
function_names = [
name for name, _ in inspect.getmembers(cur_module, inspect.isfunction)
if not name.startswith('_')
]
return function_names
if __name__ == '__main__':
args = _parse_arguments()
logger.set_level(args.log_level)
assert args.dump_engine_dir is None or args.ckpt_dir is None
engine_or_ckpt_dir = args.dump_engine_dir or args.ckpt_dir
tasks = dict(
run_llm_from_huggingface_model=lambda: run_llm_from_huggingface_model(
[args.prompt],
args.hf_model_dir,
args.dump_engine_dir,
tp_size=args.tp_size),
run_llm_from_tllm_engine=lambda: run_llm_from_tllm_engine(
[args.prompt],
args.dump_engine_dir,
tp_size=args.tp_size,
),
run_llm_generate_async_example=lambda: run_llm_generate_async_example(
[args.prompt],
args.hf_model_dir,
tp_size=args.tp_size,
streaming=args.streaming),
run_llm_with_quantization=lambda: run_llm_with_quantization(
[args.prompt], args.hf_model_dir, args.quant_type),
run_llm_with_auto_parallel=lambda: run_llm_with_auto_parallel(
[args.prompt], args.hf_model_dir, args.world_size),
run_llm_with_auto_parallel_async=lambda:
run_llm_with_auto_parallel_async([args.prompt],
args.hf_model_dir,
args.world_size,
streaming=args.streaming),
run_llm_without_tokenizer_from_engine_or_ckpt=lambda:
run_llm_without_tokenizer_from_engine_or_ckpt(engine_or_ckpt_dir),
run_llm_with_async_future=lambda: run_llm_with_async_future(
[args.prompt], args.hf_model_dir))
print(f'Running {args.task} ...')
tasks[args.task]()