mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
219 lines
9.0 KiB
Python
219 lines
9.0 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import _utils
|
|
import numpy as np
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
import os
|
|
import sys
|
|
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm.quantization.functional import (dequantize, quantize,
|
|
quantize_per_token)
|
|
from tensorrt_llm.quantization.layers import quantize_tensor
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import unittest_name_func
|
|
|
|
|
|
class TestQuantization(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
torch.manual_seed(42)
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
@parameterized.expand([('float32', True), ('float16', True),
|
|
('float32', False)],
|
|
name_func=unittest_name_func)
|
|
def test_quantize_tensor(self, dtype, use_plugin):
|
|
x_data = torch.randn(
|
|
(1, 2, 2, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
scaling_factor_data = torch.tensor(0.4, dtype=torch.float32)
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
if use_plugin:
|
|
net.plugin_config.set_quantize_tensor_plugin()
|
|
config = builder.trt_builder.create_builder_config()
|
|
config.set_flag(trt.BuilderFlag.INT8)
|
|
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS)
|
|
with tensorrt_llm.net_guard(net):
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
scaling_factor = tensorrt_llm.constant(scaling_factor_data.numpy())
|
|
output = quantize_tensor(x, scaling_factor)
|
|
net._mark_output(output, 'output', trt.int8)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
|
|
config)
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
quantized = (x_data.cuda() * scaling_factor_data.cuda()).round().clip(
|
|
-128, 127).to(dtype=torch.int8)
|
|
np.testing.assert_allclose(quantized.cpu().numpy(), outputs['output'])
|
|
|
|
def test_quantize_per_tensor(self):
|
|
dtype = "float32"
|
|
x_data = torch.randn(
|
|
(1, 2, 2, 4), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
scaling_factor_data = torch.tensor(0.4, dtype=torch.float32)
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
config = builder.trt_builder.create_builder_config()
|
|
config.set_flag(trt.BuilderFlag.INT8)
|
|
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS)
|
|
with tensorrt_llm.net_guard(net):
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
scaling_factor = tensorrt_llm.constant(scaling_factor_data.numpy())
|
|
output = quantize(x, scaling_factor, 'int8')
|
|
net._mark_output(output, 'output', trt.int8)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
|
|
config)
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
ref = torch.quantize_per_tensor(x_data, scaling_factor_data, 0,
|
|
torch.qint8)
|
|
|
|
np.testing.assert_allclose(ref.int_repr().cpu().numpy(),
|
|
outputs['output'])
|
|
|
|
def test_quantize_per_channel(self):
|
|
dtype = 'float32'
|
|
x_data = torch.randn((4, 2, 4, 8), dtype=torch.float32)
|
|
scaling_factor_data = torch.tensor((0.4, 0.3), dtype=torch.float32)
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
config = builder.trt_builder.create_builder_config()
|
|
config.set_flag(trt.BuilderFlag.INT8)
|
|
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS)
|
|
with tensorrt_llm.net_guard(net):
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
scaling_factor = tensorrt_llm.constant(scaling_factor_data.numpy())
|
|
|
|
output = quantize(x, scaling_factor, 'int8', 1)
|
|
net._mark_output(output, 'output', trt.int8)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
|
|
config)
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
ref = torch.quantize_per_channel(x_data, scaling_factor_data,
|
|
torch.tensor([0, 0]), 1, torch.qint8)
|
|
|
|
np.testing.assert_allclose(ref.int_repr().cpu().numpy(),
|
|
outputs['output'])
|
|
|
|
@parameterized.expand([('float32', True), ('float16', True),
|
|
('float32', False)],
|
|
name_func=unittest_name_func)
|
|
def test_quantize_per_token(self, dtype, use_plugin):
|
|
x_data = torch.randn(
|
|
(4, 2, 4, 8), dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype))
|
|
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
if use_plugin:
|
|
net.plugin_config.set_quantize_per_token_plugin()
|
|
|
|
config = builder.trt_builder.create_builder_config()
|
|
config.set_flag(trt.BuilderFlag.INT8)
|
|
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS)
|
|
|
|
with tensorrt_llm.net_guard(net):
|
|
x = Tensor(name='x',
|
|
shape=x_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
output, scale = quantize_per_token(x)
|
|
net._mark_output(output, 'output', trt.int8)
|
|
net._mark_output(scale, 'scale',
|
|
tensorrt_llm.str_dtype_to_trt(dtype))
|
|
|
|
for l in net.trt_network:
|
|
if l.get_output(0).dtype == tensorrt_llm._utils.str_dtype_to_trt(
|
|
"int8"):
|
|
l.get_output(0).set_dynamic_range(-127, 127)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
|
|
config)
|
|
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(feed_dict={'x': x_data.numpy()})
|
|
|
|
ref, ref_scale = _utils.gt_quantize_per_token(x_data)
|
|
scale_shape = list(x_data.shape)
|
|
scale_shape[-1] = 1
|
|
ref_scale = ref_scale.reshape(scale_shape)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
|
|
|
|
np.testing.assert_allclose(ref_scale.cpu().numpy(),
|
|
outputs['scale'],
|
|
atol=1e-2)
|
|
|
|
def test_dequantize(self):
|
|
dtype = 'int8'
|
|
quantized_torch_tensor = torch.quantize_per_tensor(
|
|
torch.tensor([-1.0, 0.0, 1.0, 2.0], dtype=torch.float32), 0.1, 0,
|
|
torch.qint8)
|
|
quantized_data = quantized_torch_tensor.int_repr()
|
|
|
|
scaling_factor_data = torch.tensor(0.1, dtype=torch.float32)
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
config = builder.trt_builder.create_builder_config()
|
|
config.set_flag(trt.BuilderFlag.INT8)
|
|
config.set_flag(trt.BuilderFlag.OBEY_PRECISION_CONSTRAINTS)
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
x = Tensor(name='x',
|
|
shape=quantized_data.shape,
|
|
dtype=tensorrt_llm.str_dtype_to_trt(dtype))
|
|
scaling_factor = tensorrt_llm.constant(scaling_factor_data.numpy())
|
|
output = dequantize(x, scaling_factor).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
|
|
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network),
|
|
config)
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(
|
|
feed_dict={'x': quantized_data.cpu().numpy()})
|
|
|
|
ref = torch.dequantize(quantized_torch_tensor)
|
|
|
|
np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|