mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-01-14 06:27:45 +08:00
* Update TensorRT-LLM --------- Co-authored-by: Bhuvanesh Sridharan <bhuvan.sridharan@gmail.com> Co-authored-by: Morgan Funtowicz <funtowiczmo@gmail.com> Co-authored-by: Eddie-Wang1120 <wangjinheng1120@163.com> Co-authored-by: meghagarwal <16129366+megha95@users.noreply.github.com>
378 lines
17 KiB
Python
378 lines
17 KiB
Python
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
|
|
import _utils
|
|
|
|
# isort: off
|
|
import torch
|
|
import tensorrt as trt
|
|
# isort: on
|
|
import os
|
|
import sys
|
|
|
|
from parameterized import parameterized
|
|
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner
|
|
|
|
import tensorrt_llm
|
|
from tensorrt_llm import Tensor
|
|
from tensorrt_llm.quantization.functional import \
|
|
weight_only_groupwise_quant_matmul
|
|
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
from utils.util import skip_pre_ampere, skip_pre_hopper, unittest_name_func
|
|
|
|
|
|
class TestWeightOnlyGroupWiseQuantMatmul(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
tensorrt_llm.logger.set_level('error')
|
|
|
|
def _run_matmul_plugin(self,
|
|
th_activation,
|
|
th_pre_quant_scale,
|
|
th_weight,
|
|
th_scale,
|
|
th_zero,
|
|
th_bias,
|
|
th_alpha,
|
|
dtype,
|
|
quant_algo,
|
|
group_size=128):
|
|
# Create builder
|
|
builder = tensorrt_llm.Builder()
|
|
net = builder.create_network()
|
|
net.plugin_config.set_weight_only_groupwise_quant_matmul_plugin(dtype)
|
|
with tensorrt_llm.net_guard(net):
|
|
network = tensorrt_llm.default_trtnet()
|
|
# Init TensorRT-LLM tensor for activation
|
|
activation = Tensor(
|
|
name='activation',
|
|
shape=th_activation.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for pre_quant_scale
|
|
pre_quant_scale = Tensor(
|
|
name='pre_quant_scale',
|
|
shape=th_pre_quant_scale.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for weight
|
|
weight = Tensor(name='weight',
|
|
shape=th_weight.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for scale
|
|
scale = Tensor(name='scale',
|
|
shape=th_scale.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for zero
|
|
zero = Tensor(name='zero',
|
|
shape=th_zero.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for bias
|
|
bias = Tensor(name='bias',
|
|
shape=th_bias.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt(dtype))
|
|
# Init TensorRT-LLM tensor for alpha
|
|
alpha = Tensor(
|
|
name='alpha',
|
|
shape=th_alpha.shape,
|
|
dtype=tensorrt_llm._utils.str_dtype_to_trt("float32"))
|
|
|
|
# Get output tensor for WOQ Matmul
|
|
output = weight_only_groupwise_quant_matmul(activation,
|
|
pre_quant_scale,
|
|
weight,
|
|
scale,
|
|
zero,
|
|
bias,
|
|
alpha,
|
|
quant_algo,
|
|
group_size,
|
|
dtype=dtype).trt_tensor
|
|
output.name = 'output'
|
|
network.mark_output(output)
|
|
output.dtype = tensorrt_llm._utils.str_dtype_to_trt(dtype)
|
|
|
|
# Build engine consisting of only WBQ Matmul
|
|
build_engine = EngineFromNetwork(
|
|
(builder.trt_builder, net.trt_network),
|
|
config=CreateConfig(
|
|
fp16=(dtype == "float16"),
|
|
bf16=(dtype == "bfloat16"),
|
|
memory_pool_limits={trt.MemoryPoolType.WORKSPACE: 33554432}))
|
|
|
|
# Infer engine
|
|
with TrtRunner(build_engine) as runner:
|
|
outputs = runner.infer(
|
|
feed_dict={
|
|
'activation': th_activation,
|
|
'pre_quant_scale': th_pre_quant_scale,
|
|
'weight': th_weight,
|
|
'scale': th_scale,
|
|
'zero': th_zero,
|
|
'bias': th_bias,
|
|
'alpha': th_alpha
|
|
})
|
|
|
|
return outputs['output']
|
|
|
|
def _woq_groupwise_matmul(self,
|
|
m,
|
|
n,
|
|
k,
|
|
activation_dtype_str,
|
|
quantized_weight_dtype,
|
|
has_pre_quant,
|
|
has_zero,
|
|
has_bias,
|
|
group_size=128,
|
|
use_w4a8_awq=False):
|
|
|
|
torch.manual_seed(0)
|
|
activation_dtype = tensorrt_llm._utils.str_dtype_to_torch(
|
|
activation_dtype_str)
|
|
|
|
total_groups = (k + group_size - 1) // group_size
|
|
activation = torch.randn(m, k, dtype=activation_dtype)
|
|
bias = torch.randn(
|
|
1, n, dtype=activation_dtype) if has_bias else torch.Tensor().to(
|
|
activation_dtype)
|
|
zero = torch.randn(
|
|
total_groups, n, dtype=activation_dtype
|
|
) if has_zero else torch.Tensor().to(activation_dtype)
|
|
|
|
scale = torch.rand(total_groups, n, dtype=activation_dtype)
|
|
pre_quant_scale = torch.rand(1, k, dtype=activation_dtype)
|
|
fp8_alpha = torch.rand(
|
|
1, dtype=torch.float32) if use_w4a8_awq else torch.Tensor().float()
|
|
|
|
num_weights_in_32_bits = 0
|
|
if quantized_weight_dtype == torch.int8:
|
|
num_weights_in_32_bits = 4
|
|
elif quantized_weight_dtype == torch.quint4x2:
|
|
num_weights_in_32_bits = 8
|
|
else:
|
|
assert False, "Unsupported weight dtype."
|
|
|
|
assert n % num_weights_in_32_bits == 0, f"n must be a multiple of {num_weights_in_32_bits}"
|
|
unprocessed_int_weight = torch.randint(-2**31,
|
|
2**31,
|
|
(k, n // num_weights_in_32_bits),
|
|
dtype=torch.int32)
|
|
|
|
preprocessor = torch.ops.trtllm.preprocess_weights_for_mixed_gemm
|
|
unpacker = torch.ops.trtllm.unpack_int4_packed_tensor_to_int8
|
|
|
|
unprocessed_weight = unprocessed_int_weight.view(torch.int8)
|
|
|
|
ref_q_weight = unpacker(unprocessed_weight)
|
|
cuda_q_weight = preprocessor(
|
|
unprocessed_weight, quantized_weight_dtype).view(activation_dtype)
|
|
|
|
# Flags for indicating whether the corresponding inputs are applied in quant_algo
|
|
BIAS = 1
|
|
ZERO = 2
|
|
PRE_QUANT_SCALE = 4
|
|
W4A8_AWQ = 8
|
|
|
|
quant_algo = use_w4a8_awq * W4A8_AWQ + has_pre_quant * PRE_QUANT_SCALE + has_zero * ZERO + has_bias * BIAS
|
|
|
|
scale_ref = scale.repeat_interleave(group_size, dim=0)[:k, :]
|
|
ref_th_weight = ref_q_weight.to(activation_dtype) * scale_ref
|
|
|
|
if has_zero:
|
|
zero_ref = zero.repeat_interleave(group_size, dim=0)[:k, :]
|
|
ref_th_weight += zero_ref
|
|
|
|
output = self._run_matmul_plugin(activation, pre_quant_scale,
|
|
cuda_q_weight, scale, zero, bias,
|
|
fp8_alpha, activation_dtype_str,
|
|
quant_algo, group_size).cpu()
|
|
|
|
if use_w4a8_awq:
|
|
activation *= fp8_alpha
|
|
|
|
if has_pre_quant:
|
|
pre_quant_scale = pre_quant_scale.repeat(m, 1)
|
|
activation = torch.mul(activation, pre_quant_scale)
|
|
|
|
ref = _utils.woq_groupwise_gt_matmul(activation, ref_th_weight, bias)
|
|
_utils.woq_assert_near_eq(ref, output, 2)
|
|
|
|
@parameterized.expand(
|
|
[(1, 1024, 64, 'float16', False, True, True, 64),
|
|
(16, 1024, 256, 'float16', False, True, False, 64),
|
|
(32, 2048, 384, 'float16', False, False, True, 64),
|
|
(64, 2048, 1024, 'float16', False, False, False, 64),
|
|
(2, 1024, 128, 'float16', False, True, True, 128),
|
|
(8, 1024, 256, 'float16', False, True, False, 128),
|
|
(48, 2048, 384, 'float16', False, False, True, 128),
|
|
(96, 2048, 1024, 'float16', False, False, False, 128)],
|
|
name_func=unittest_name_func)
|
|
@skip_pre_ampere
|
|
def test_matmul_int4_input(self,
|
|
m,
|
|
n,
|
|
k,
|
|
dtype,
|
|
has_pre_quant,
|
|
has_zero,
|
|
has_bias,
|
|
group_size=128):
|
|
self._woq_groupwise_matmul(m, n, k, dtype, torch.quint4x2,
|
|
has_pre_quant, has_zero, has_bias,
|
|
group_size)
|
|
|
|
@parameterized.expand(
|
|
[(1, 1024, 64, 'bfloat16', False, True, True, 64),
|
|
(16, 1024, 256, 'bfloat16', False, True, False, 64),
|
|
(32, 2048, 384, 'bfloat16', False, False, True, 64),
|
|
(64, 2048, 1024, 'bfloat16', False, False, False, 64),
|
|
(2, 1024, 128, 'bfloat16', False, True, True, 128),
|
|
(8, 1024, 256, 'bfloat16', False, True, False, 128),
|
|
(48, 2048, 384, 'bfloat16', False, False, True, 128),
|
|
(96, 2048, 1024, 'bfloat16', False, False, False, 128)],
|
|
name_func=unittest_name_func)
|
|
@skip_pre_ampere
|
|
def test_matmul_bf16_int4_input(self,
|
|
m,
|
|
n,
|
|
k,
|
|
dtype,
|
|
has_pre_quant,
|
|
has_zero,
|
|
has_bias,
|
|
group_size=128):
|
|
self._woq_groupwise_matmul(m, n, k, dtype, torch.quint4x2,
|
|
has_pre_quant, has_zero, has_bias,
|
|
group_size)
|
|
|
|
@parameterized.expand([(3, 1024, 64, 'float16', True, True, 64),
|
|
(128, 1024, 256, 'float16', True, False, 64),
|
|
(192, 2048, 384, 'float16', False, True, 64),
|
|
(256, 2048, 1024, 'float16', False, False, 64),
|
|
(4, 1024, 128, 'float16', True, True, 128),
|
|
(64, 1024, 256, 'float16', True, False, 128),
|
|
(384, 2048, 384, 'float16', False, True, 128),
|
|
(512, 2048, 1024, 'float16', False, False, 128)])
|
|
@skip_pre_ampere
|
|
def test_prequant_matmul_fp16_int4_input(self,
|
|
m,
|
|
n,
|
|
k,
|
|
dtype,
|
|
has_zero,
|
|
has_bias,
|
|
group_size=128):
|
|
has_pre_quant = True
|
|
self._woq_groupwise_matmul(m, n, k, dtype, torch.quint4x2,
|
|
has_pre_quant, has_zero, has_bias,
|
|
group_size)
|
|
|
|
@parameterized.expand([(3, 1024, 64, 'bfloat16', True, True, 64),
|
|
(128, 1024, 256, 'bfloat16', True, False, 64),
|
|
(192, 2048, 384, 'bfloat16', False, True, 64),
|
|
(256, 2048, 1024, 'bfloat16', False, False, 64),
|
|
(4, 1024, 128, 'bfloat16', True, True, 128),
|
|
(64, 1024, 256, 'bfloat16', True, False, 128),
|
|
(384, 2048, 384, 'bfloat16', False, True, 128),
|
|
(512, 2048, 1024, 'bfloat16', False, False, 128)],
|
|
name_func=unittest_name_func)
|
|
@skip_pre_ampere
|
|
def test_prequant_matmul_bf16_int4_input(self,
|
|
m,
|
|
n,
|
|
k,
|
|
dtype,
|
|
has_zero,
|
|
has_bias,
|
|
group_size=128):
|
|
has_pre_quant = True
|
|
self._woq_groupwise_matmul(m, n, k, dtype, torch.quint4x2,
|
|
has_pre_quant, has_zero, has_bias,
|
|
group_size)
|
|
|
|
@parameterized.expand(
|
|
[(1, 1024, 128, 'float16', True, True, True, 64, False),
|
|
(2, 1024, 256, 'float16', True, True, True, 64, False),
|
|
(3, 1024, 384, 'float16', True, True, True, 64, False),
|
|
(4, 1024, 512, 'float16', True, True, True, 128, False),
|
|
(16, 1024, 256, 'float16', True, True, False, 128, True),
|
|
(64, 1024, 256, 'float16', True, True, False, 128, True),
|
|
(128, 2048, 384, 'float16', True, False, True, 128, False),
|
|
(256, 2048, 1024, 'float16', True, False, False, 128, True)],
|
|
name_func=unittest_name_func)
|
|
@skip_pre_hopper
|
|
def test_prequant_matmul_fp8_int4_input_hopper(self, m, n, k, dtype,
|
|
has_pre_quant, has_zero,
|
|
has_bias, group_size,
|
|
use_w4a8_awq):
|
|
self._woq_groupwise_matmul(m,
|
|
n,
|
|
k,
|
|
dtype,
|
|
torch.quint4x2,
|
|
has_pre_quant,
|
|
has_zero,
|
|
has_bias,
|
|
group_size,
|
|
use_w4a8_awq=use_w4a8_awq)
|
|
|
|
# On hopper, any multiple of 64 works as a group size for FP16, with the CUTLASS kernel
|
|
# We keep some unit tests to ensure that this support is maintained, even if the CUDA kernels
|
|
# do not support it at the moment.
|
|
@parameterized.expand(
|
|
[(128, 128, 128, 'float16', False, False, False, 64),
|
|
(32, 1024, 128, 'bfloat16', True, True, True, 128),
|
|
(32, 1024, 256, 'float16', True, True, False, 192),
|
|
(32, 2048, 384, 'bfloat16', True, False, True, 256),
|
|
(64, 2048, 1024, 'float16', True, False, False, 320)],
|
|
name_func=unittest_name_func,
|
|
)
|
|
@skip_pre_hopper
|
|
def test_hopper_flexible_groups(self, m, n, k, act_dtype, has_pre_quant,
|
|
has_zero, has_bias, group_size):
|
|
self._woq_groupwise_matmul(m, n, k, act_dtype, torch.quint4x2,
|
|
has_pre_quant, has_zero, has_bias,
|
|
group_size)
|
|
|
|
# On hopper, any multiple of 128 works as a group size for FP8, with the CUTLASS kernel
|
|
# We keep some unit tests to ensure that this support is maintained, even if the CUDA kernels
|
|
# do not support it at the moment.
|
|
@parameterized.expand(
|
|
[(32, 1024, 128, 'float16', True, True, True, 128),
|
|
(32, 1024, 128, 'float16', True, True, True, 256),
|
|
(32, 1024, 256, 'float16', True, True, False, 384),
|
|
(32, 2048, 1024, 'float16', True, False, True, 512),
|
|
(64, 2048, 2048, 'float16', True, False, False, 640)],
|
|
name_func=unittest_name_func)
|
|
@skip_pre_hopper
|
|
def test_hopper_fp8_int4_flexible_groups(self, m, n, k, dtype,
|
|
has_pre_quant, has_zero, has_bias,
|
|
group_size):
|
|
self._woq_groupwise_matmul(m,
|
|
n,
|
|
k,
|
|
dtype,
|
|
torch.quint4x2,
|
|
has_pre_quant,
|
|
has_zero,
|
|
has_bias,
|
|
group_size,
|
|
use_w4a8_awq=True)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|