mirror of
https://github.com/NVIDIA/TensorRT-LLM.git
synced 2026-02-17 00:04:57 +08:00
160 lines
5.3 KiB
Python
160 lines
5.3 KiB
Python
from collections.abc import Callable
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from tensorrt_llm.mapping import Mapping
|
|
|
|
from ..model_config import ModelConfig
|
|
from ..peft.lora.layer import LoraLayer, LoraModuleType
|
|
from ..utils import Fp4QuantizedTensor, relu2
|
|
from .linear import Linear, TensorParallelMode, WeightMode, WeightsLoadingConfig
|
|
|
|
|
|
class MLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
bias: bool,
|
|
activation: Callable[[torch.Tensor], torch.Tensor] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
config: Optional[ModelConfig] = None,
|
|
layer_idx: Optional[int] = None,
|
|
reduce_output: bool = True,
|
|
overridden_tp_size: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.activation = activation
|
|
|
|
config = config or ModelConfig()
|
|
self.mapping = config.mapping
|
|
if overridden_tp_size is not None:
|
|
assert config.mapping.tp_size % overridden_tp_size == 0
|
|
tp_size = overridden_tp_size
|
|
# "Misuse" pp_size here to perform all-reduce within smaller groups
|
|
pp_size = config.mapping.pp_size * config.mapping.tp_size // overridden_tp_size
|
|
mapping = Mapping(
|
|
world_size=tp_size * pp_size,
|
|
rank=self.mapping.rank,
|
|
gpus_per_node=self.mapping.gpus_per_node,
|
|
tp_size=tp_size,
|
|
pp_size=pp_size,
|
|
)
|
|
else:
|
|
mapping = config.mapping
|
|
|
|
self.up_lora = LoraLayer(
|
|
[LoraModuleType.MLP_H_TO_4H],
|
|
[self.intermediate_size // config.mapping.tp_size])
|
|
|
|
self.up_proj = Linear(
|
|
self.hidden_size,
|
|
self.intermediate_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.COLUMN,
|
|
weights_loading_config=WeightsLoadingConfig(
|
|
weight_mode=WeightMode.VANILLA),
|
|
quant_config=config.get_quant_config(),
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
lora=self.up_lora,
|
|
allreduce_strategy=config.allreduce_strategy,
|
|
force_dynamic_quantization=config.force_dynamic_quantization)
|
|
|
|
self.down_lora = LoraLayer([LoraModuleType.MLP_4H_TO_H],
|
|
[self.hidden_size])
|
|
self.down_proj = Linear(
|
|
self.intermediate_size,
|
|
self.hidden_size,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
mapping=mapping,
|
|
tensor_parallel_mode=TensorParallelMode.ROW,
|
|
quant_config=config.get_quant_config(),
|
|
skip_create_weights_in_init=config.skip_create_weights_in_init,
|
|
lora=self.down_lora,
|
|
allreduce_strategy=config.allreduce_strategy,
|
|
force_dynamic_quantization=config.force_dynamic_quantization,
|
|
reduce_output=reduce_output,
|
|
)
|
|
|
|
self._use_fused_relu2_quant = False
|
|
|
|
def create_weights(self):
|
|
self.up_proj.create_weights()
|
|
self.down_proj.create_weights()
|
|
|
|
has_nvfp4 = hasattr(self.down_proj,
|
|
'has_nvfp4') and self.down_proj.has_nvfp4
|
|
has_kernel = hasattr(torch.ops.trtllm, 'fused_relu2_quantize')
|
|
has_scale = hasattr(self.down_proj, 'input_scale')
|
|
is_relu2 = self.activation is relu2
|
|
|
|
self._use_fused_relu2_quant = has_nvfp4 and has_kernel and has_scale and is_relu2
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
lora_params: Optional[dict] = None,
|
|
) -> torch.Tensor:
|
|
if lora_params is not None:
|
|
return self.forward_lora(x, lora_params=lora_params)
|
|
|
|
x_up = self.up_proj(x)
|
|
|
|
if self._use_fused_relu2_quant:
|
|
x_act = self._fused_relu2_quant(x_up)
|
|
else:
|
|
x_act = self.activation(x_up)
|
|
|
|
x_down = self.down_proj(x_act)
|
|
|
|
return x_down
|
|
|
|
def _fused_relu2_quant(self, x: torch.Tensor) -> Fp4QuantizedTensor:
|
|
x_flat = x.view(-1, x.shape[-1])
|
|
|
|
if not x_flat.is_contiguous():
|
|
x_flat = x_flat.contiguous()
|
|
|
|
if x_flat.dtype not in (torch.float16, torch.bfloat16):
|
|
x_flat = x_flat.to(torch.bfloat16)
|
|
|
|
fp4_tensor, sf_tensor = torch.ops.trtllm.fused_relu2_quantize(
|
|
x_flat, self.down_proj.input_scale, 16)
|
|
|
|
return Fp4QuantizedTensor(
|
|
fp4_tensor=fp4_tensor,
|
|
scaling_factor=sf_tensor,
|
|
is_sf_swizzled=True,
|
|
)
|
|
|
|
def forward_lora(
|
|
self,
|
|
x: torch.Tensor,
|
|
lora_params: Optional[dict] = None,
|
|
) -> torch.Tensor:
|
|
assert lora_params is not None
|
|
|
|
x_up = self.up_proj(x)
|
|
|
|
assert self.layer_idx is not None, "layer_idx is required for lora"
|
|
x_up_lora = self.up_lora(x, lora_params, self.layer_idx)
|
|
if x_up_lora is not None:
|
|
x_up = x_up + x_up_lora
|
|
|
|
x_act = self.activation(x_up)
|
|
x_down = self.down_proj(x_act,
|
|
lora_params=lora_params,
|
|
layer_idx=self.layer_idx)
|
|
|
|
return x_down
|